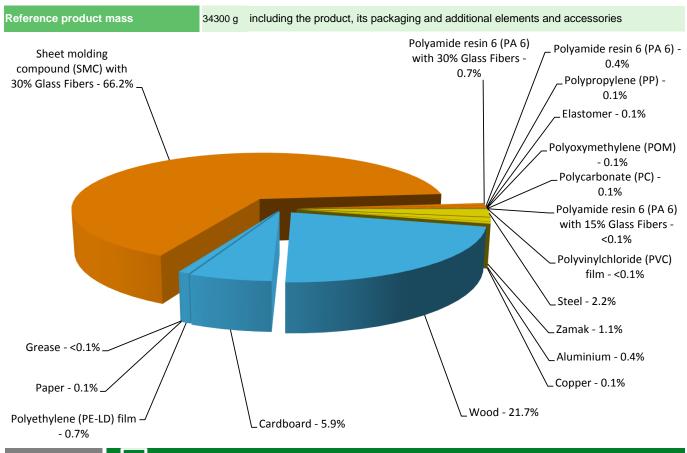
Product Environmental Profile

THALASSA PLA



General information

Representative product	THALASSA PLA -NSYPLA1073					
Description of the product	Thalassa PLA Enclosure product is to protect, integrate and allow the fastening of electric, electronic or mechanical devices. This product is a floor-standing polyester enclosures used for outdoor conditions.					
Functional unit	To protect persons during 20 years against direct contact with live parts and allow monitoring, control and the protection of the components inside the enclosure from weather condition in a single enclosure or a cabinet having the dimensions 1000mm x 750Lmm x 320mm, while protecting against mechanical impacts (IK8 - IEC62262) and the penetration of solid objects and liquids (IP65 - IEC 60529).					

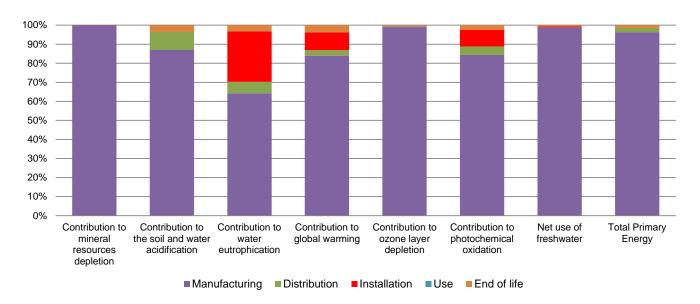
Constituent materials

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2011/65/EU of 8 June 2011) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page


Additional environmental information

	The THALASSA PLA presents the following relevent environmental aspects						
Manufacturing	Manufactured at a Schneider Electric production site ISO14001 certified						
Distribution	Weight and volume of the packaging optimized, based on the European Union's packaging directive						
	Packaging weight is 9624.6 g, consisting of Wood (Plain, for pallet) (76%), Cardboard (Corrugated) (12.6%), Cardboard (Duplex-Triplex) (8.2%), LDPE Film (2.5%), PP (Polypropylene) (0.5%), Paper (0.3%).						
	Packaging recycled materials is 20% of total packaging mass.						
	Product distribution optimised by setting up local distribution centres						
Installation	The product does not require special installation procedure and requires little to no energy to install. The disposal of the packaging materials are accounted for during the installation phase (including transport to disposal).						
Use	The product does not require special maintenance operations.						
End of life	End of life optimized to decrease the amount of waste and allow recovery of the product components and materials						
	No special end-of-life treatment required. According to countries' practices this product can enter the usual end-of-life treatment process.						
	Recyclability potential: Based on "ECO'DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).						

Environmental impacts

Reference life time	20 years					
Product category	Enclosures					
Installation elements	No special components needed					
Use scenario	This product does not have any energy consumption					
Geographical representativeness	Europe					
Technological representativeness	Thalassa PLA Enclosure product is to protect, integrate and allow the fastening of electric, electronic or mechanical devices. This product is a floor-standing polyester enclosures used for outdoor conditions.					
Energy model used	Manufacturing	Installation	Use	End of life		
	Energy model used: Molins, Spain	0	0	0		

Compulsory indicators	THALASSA PLA - NSYPLA1073						
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Contribution to mineral resources depletion	kg Sb eq	1.10E-03	1.10E-03	1.77E-07	0*	0*	0*
Contribution to the soil and water acidification	kg SO ₂ eq	2.15E-01	1.87E-01	2.02E-02	0*	0*	7.67E-03
Contribution to water eutrophication	kg PO ₄ ³⁻ eq	7.72E-02	4.96E-02	4.65E-03	2.04E-02	0*	2.50E-03
Contribution to global warming	kg CO ₂ eq	1.48E+02	1.24E+02	4.43E+00	1.37E+01	0*	5.71E+00
Contribution to ozone layer depletion	kg CFC11 eq	2.67E-05	2.66E-05	8.96E-09	0*	0*	1.86E-07
Contribution to photochemical oxidation	kg C ₂ H ₄ eq	3.27E-02	2.75E-02	1.44E-03	2.89E-03	0*	7.68E-04
Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Net use of freshwater	m3	6.74E-01	6.66E-01	3.96E-04	4.02E-03	0*	3.97E-03
Total Primary Energy	MJ	2.79E+03	2.69E+03	6.26E+01	0*	0*	3.98E+01

Optional indicators	THALASSA PLA - NSYPLA1073						
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Contribution to fossil resources depletion	MJ	2.07E+03	1.97E+03	6.22E+01	1.50E+00	0*	3.28E+01
Contribution to air pollution	m³	1.81E+04	1.74E+04	1.88E+02	2.27E+02	0*	2.66E+02
Contribution to water pollution	m³	8.95E+03	7.71E+03	7.28E+02	1.58E+02	0*	3.60E+02
Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Use of secondary material	kg	1.04E+00	1.04E+00	0*	0*	0*	0*
Total use of renewable primary energy resources	MJ	1.91E+02	1.92E+02	8.34E-02	0*	0*	3.92E-02
Total use of non-renewable primary energy resources	MJ	2.60E+03	2.50E+03	6.25E+01	0*	0*	3.97E+01
Use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1.52E+01	1.57E+01	8.34E-02	0*	0*	3.92E-02
Use of renewable primary energy resources used as raw material	MJ	1.76E+02	1.76E+02	0*	0*	0*	0*
Use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	2.30E+03	2.20E+03	6.25E+01	2.36E-01	0*	3.97E+01
Use of non renewable primary energy resources used as raw material	MJ	2.99E+02	2.99E+02	0*	0*	0*	0*
Use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*
Use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*
Waste categories	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Hazardous waste disposed	kg	1.48E+02	1.01E+02	0*	0*	0*	4.69E+01
Non hazardous waste disposed	kg	3.09E+01	2.16E+01	1.57E-01	8.97E+00	0*	1.09E-01
Radioactive waste disposed	kg	1.64E-02	1.66E-02	1.12E-04	0*	0*	1.77E-04
Other environmental information	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Materials for recycling	kg	1.55E+00	2.29E-01	0*	0*	0*	1.32E+00
Components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*
Materials for energy recovery	kg	1.57E+00	1.65E-01	0*	2.81E-01	0*	1.13E+00
Exported Energy	MJ	6.50E+00	0*	0*	6.50E+00	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version EIME v5.5, database version 2015-04.

SCHN-00074-V01.01-EN - PEP ECOPASSPORT® - THALASSA PLA

The manufacturing phase is the life cycle phase which has the greatest impact on the majority of environmental indicators (based on compulsory indicators).

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration N°SCHN-00074-V01.01-ENDrafting rulesPCR-ed3-EN-2015 04 02Verifier accreditation N°VH25Supplemented byPSR-0005-ed2-EN-2016 03 29Date of issue11/2016Information and reference documents
Validity periodwww.pep-ecopassport.org

Independent verification of the declaration and data, in compliance with ISO 14025: 2010

Internal External X

The PCR review was conducted by a panel of experts chaired by Philippe Osset (SOLINNEN).

The elements of the present PEP cannot be compared with elements from another program.

Document in compliance with ISO 14025 : 2010 « Environmental labels and declarations. Type III environmental declarations »

Environmental data in alignment with EN 15804 : 2012 + A1 : 2013

Schneider Electric Industries SAS

Country Customer Care Center:

http://www2.schneider-electric.com/sites/corporate/en/support/operations/local-operations.page

35, rue Joseph Monier

CS 30323

F- 92506 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 896 313 776 €

www.schneider-electric.com

Published by Schneider Electric

SCHN-00074-V01.01-EN

© 2015 - Schneider Electric - All rights reserved

11/2016