

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

TecFlex H07RN-F - 5G6

The Norwegian EPD Foundation

Owner of the declaration: TECCON Norge AS

Product: TecFlex H07RN-F - 5G6

Declared unit:

1 m

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 027:2020 Part B for Electrical cables and wires

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-9736-9643

Registration number: NEPD-9736-9643

Issue date:

10.04.2025

Valid to:

10.04.2030

EPD software:

LCAno EPD generator ID: 862768

General information

Product

TecFlex H07RN-F - 5G6

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-9736-9643

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 027:2020 Part B for Electrical cables and wires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m TecFlex H07RN-F - 5G6

Declared unit with option:

A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, B6, B7, C1, C2, C3, C4, D

Functional unit:

Cable and packaging

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT32.

Third party verifier:

Vito D'Incognito, Take Care International

(no signature required)

Owner of the declaration:

TECCON Norge AS Contact person: Jan Vestergaard Phone: 51 73 37 00 e-mail: jan.vestergaard@teccon.no

Manufacturer:

TECCON Norge AS Mekjarvik 18 4072 Randaberg, Norway

Place of production:

GENERAL CAVI S.P.A. VIA Dell'Industria 22 48017 Lavezzola Conselice (RA), Italy

Management system:

Eco-lighthouse: 4247

Organisation no:

986 452 125

Issue date:

10.04.2025

Valid to:

10.04.2030

Year of study:

2024

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Approval number: NEPDT155

Developer of EPD: Jan Vestergaard, Teccon Norge AS

Reviewer of company-specific input data and EPD: Jorulv Søbstad

Approved:

9

Håkon Hauan, CEO EPD-Norge

Product

Product description:

The Tec Flex H07RN-F cable guarantees a product of great suppleness offering excellent resistance to inclement environmental conditions and to oils & greases as well as adverse mechanical and thermal effects. This makes the product ideal for installation on equipment in continual and interrupted operation under aggressive conditions, (e.g. construction site vehicles, generators, pumps, etc.), as well as most other extreme and severe usage industrial applications. It can be safely be immersed in fresh- or sea water up to100 meters depth and is approved by "Bureau VERITAS" for "Marine" applications.

This cable is suitable for dry, humid or wet environments in open air, in workshops with an explosive athmosphere. When used for connections they're subjected to medium/severe mechanical stress. It can be used even in fixed laying like floors and temporary construction site set offs.CPR Compliant 305/2011 EU

Special Features in addition to the features of the H07RN_F:

-Insulation tested up to +90 °C. Includes the characteristics of the H07BN4-F cables and the H07BB-F cables.

Low Temperature Resistant (-40°C dynamic -50°C static).

- -AD8 water resistance 10 bar such as the H07RN8-F.
- -OZONE RESISTANT (Test A) and (Test B). UV Resistant.

AG2 Shock Resistant.

Excellent resistance to mineral oils, fats, AF3, and atmospheric agents AK2.

Resistance to alternate bending of sections ≤ 4 mm2: for at least 100000 cycles

Product specification

General: EN 50525--; ENB 50525-2-21

Materials	kg	%
Metal - Copper	0,23	40
Plastic - Polyethylene	0,35	60
Total	0,58	100,00
Packaging	kg	%
Packaging - Wood	0,05	100,00
Total incl. packaging	0,63	100,00

Technical data:

Construction standards: EN 50525--; ENB 50525-2-21

Conductor: Class 5 flexible copper EN60228 Insulation conductor: Elastomer mixture E14 Conductor marking Colored acc. Cenelec

Conductor laying SZ Jacket Polycholoprene EM2

Marking H07RN.F xx G YY + Meter marking

Voltage - nominal Uo/U 450/750V

Voltage - test 2500V

Max Conductor temperature operation 90° Max temperature at Short circuit 5s max 250°

Resistance insulation 1000M?*Km

Resistant to fire performance EN 50265-2-1; EN 60332-1-2

CPR EN 50575 compliance Eca

DoP 0270

Temperature - operation -40 to + 90 Temperature - installation -25 + 60

Bending radius 5 x D

Market:

Nordic

Reference service life, product

30Y+

Reference service life, building or construction works

30Y+

LCA: Calculation rules

Declared unit:

1 m TecFlex H07RN-F - 5G6

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

All major materials have been included. Substance representing < 1% have not been included. This include folio film for packaging!

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. The allocation is made in accordance with the guidelines given in EN 15804.

Raw material - Information derived from manufactory and from a LCA generator

Processing: Derived from actual measurements during production of the individual units/stages

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Data from material supplier and the LCA generator has been accepted "As-Is"

Data from processing TECCON in-house has been repeated ongoingly without major deviations. Figures given in document are worst case values.

Materials	Source	Data quality	Year
Metal - Copper	ecoinvent 3.6	Database	2019
Packaging - Wood	Modified ecoinvent 3.6	Database	2019
Plastic - Polyethylene	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product sta	ige		ruction ion stage				Use stage					End of l		Beyond the system boundaries	
Raw	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	X	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	X

System boundary:

Cradle to Gate.

The following stages have been declared: A1-A4

The flowchart below illustrates the system boundaries of the analysis:

						Coilfix				
Drum	A1	A2		A3		A4	A5	B1-B7	C1-C4	D
					Packaging solution processing "Drum delivery"	 Transport from TECCON to supplier	No significant impact accounted for in EPD	No significant impact accounted for in EPD	Transport to ne are st Waste Treatment Plant The Individuel pioducts parts plastic and copper: will be transferred to recycling points	Benefit from recycling points to specifict users
					†					
		Transport from supplier to TECCON		Prepartion / cut - at TECCON						

Additional technical information:

Article 1043269 Tec Flex H07RN-F 5G6 represent the maximum energy consumption from the product family below - from a production volume perspective as follow:

1043218 Tec Flex 4G6 1043224 Tec Flex 4G10 1043225 Tec Flex 4G16 1043226 Tec Flex 4G25 1043227 Tec Flex 4G35 1043228 Tec Flex 4G50 1043252 Tec Flex 4G70 1043253 Tec Flex 4G95 1043254 Tec Flex 4G120 1043259 Tec Flex 4G150 1043269 Tec Flex 5G6 1043270 Tec Flex 5G10 1043271 Tec Flex 5G16 1043291 Tec Flex 5G25 1043292 Tec Flex 5G35 1043293 Tec Flex 5G50 1043294 Tec Flex 5G70 1043295 Tec Flex 5G95 1043205 Tec Flex 1x50 1043206 Tec Flex 1x70 1043207 Tec Flex 1x95 1043212 Tec Flex 1x120 1043208 Tec Flex 1x185 1043234 Tec Flex 4G10 1043235 Tec Flex 4G16 1043236 Tec Flex 4G25 1043237 Tec Flex 4G35 1043238 Tec Flex 4G50 1043239 Tec Flex 4G70 1043240 Tec Flex 4G95 1043241 Tec Flex 4G120 1043242 Tec Flex 4G150 1043275 Tec Flex 5G6 1043276 Tec Flex 5G10 1043277 Tec Flex 5G16 1043278 Tec Flex 5G25 1043279 Tec Flex 5G35 1043280 Tec Flex 5G50 1043281 Tec Flex 5G70 1043282 Tec Flex 5G95 1043224 Onnline H07RN-F 4G10 1043225 Onnline H07RN-F 4G16 1043226 Onnline H07RN-F 4G25 1043227 Onnline H07RN-F 4G35 1043228 Onnline H07RN-F 4G50 1043252 Onnline H07RN-F 4G70 1043253 Onnline H07RN-F 4G95 1043224 Onnline H07RN-F 5G10 1043225 Onnline H07RN-F 5G16 1043226 Onnline H07RN-F 5G25 1043227 Onnline H07RN-F 5G35 1043228 Onnline H07RN-F 5G50 1043252 Onnline H07RN-F 5G70 1043253 Onnline H07RN-F 5G95

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 = In A4, a transport distance from the production site to Elektroskandia's warehouse in Langhus was included. A distance of 300 km was also added as additional transport to market.

Modules A5 = 2 % product losses during installation are estimated by the company. No energy use has been quantified since installation in buildings is often done by manual labour. Use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off criterion of 1%.

Module C1 = de-construction in buildings is often done by manual labour. Use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off criterion of 1%.

Module C2 = 85 km is added as default transport to waste treatment in C2.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals and plastics allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastics is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (kgkm) - RER	36,7 %	988	0,043	l/tkm	42,48
· · · · · · · · · · · · · · · · · · ·	Unit	Value			
Assembly (A5) Product loss during installation (percentage of					
cable)	Units/DU	0,020			
Waste, wood, to average treatment - A5 including	kg	0,045			
transport (kg)	J				
Operational energy (B6)	Unit	Value			
Electricity, Norway (kWh)	kWh/DU	0,13			
Transport to waste processing (C2)	Capacity utilisation	Distance (km)	Fuel/Energy Consumption	Unit	Value
	(incl. return) %				(Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	300	0,043	l/tkm	12,90
Waste processing (C3)	Unit	Value			
Waste treatment of polyethylene (PE),					
incineration with energy recovery and fly ash extraction (kg)	kg	0,17			
Copper to recycling (kg)	kg	0,14			
71 7 3 1 3	-	,			
Disposal (C4)	Unit	Value			
Landfilling of aluminium (kg)	kg/DU	0,0061			
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg/DU	0,0066			
Landfilling of ashes from incineration of					
Polyvinylchloride (PVC), process per kg ashes and residues (kg)	kg/DU	0,010			
Landfilling of plastic mixture (kg)	kg	0,17			
Landfilling of copper (kg)	kg	0,093			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary copper with net scrap (kg)	kg/DU	0,14			
Substitution of electricity, in Norway (MJ)	MJ/DU	1,88			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ/DU	21,55			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	onmental impact											
	Indicator			Unit	A1	A2	A3	A4	A5	B1	B2	В3
	GWP-total		kg	CO ₂ -eq	1,72E+00	3,59E-01	1,80E-01	1,02E-01	1,28E-01	0	0	0
	GWP-fossil		kg	CO ₂ -eq	1,76E+00	3,58E-01	1,77E-01	1,02E-01	6,01E-02	0	0	0
	GWP-biogenio	2	kg	CO ₂ -eq	-3,95E-02	1,46E-04	3,13E-03	4,21E-05	6,75E-02	0	0	0
	GWP-luluc		kg	CO ₂ -eq	1,50E-03	1,32E-04	3,40E-05	3,62E-05	3,44E-05	0	0	0
Ö	ODP	ODP kg		CFC11 -eq	1,05E-07	8,07E-08	2,43E-08	2,30E-08	4,89E-09	0	0	0
Œ	AP		mo	ol H+ -eq	5,60E-02	1,56E-03	9,65E-04	2,92E-04	1,19E-03	0	0	0
-	EP-FreshWate	r	k	g P -eq	4,54E-04	2,79E-06	5,66E-06	8,12E-07	9,28E-06	0	0	0
-	EP-Marine		k	g N -eq	3,95E-03	3,37E-04	1,24E-04	5,78E-05	9,48E-05	0	0	0
-	EP-Terrestial		m	ol N -eq	5,68E-02	3,76E-03	1,79E-03	6,47E-04	1,31E-03	0	0	0
	РОСР		kg N	MVOC -eq	1,59E-02	1,24E-03	4,10E-04	2,48E-04	3,70E-04	0	0	0
	ADP-minerals&me	etals ¹		g Sb-eq	4,98E-04	9,53E-06	1,39E-06	2,81E-06	1,03E-05	0	0	0
	ADP-fossil ¹			MJ	3,93E+01	5,38E+00	2,61E+00	1,54E+00	9,94E-01	0	0	0
<u>%</u>	WDP ¹			m^3	1,24E+02	5,03E+00	2,77E+01	1,49E+00	3,22E+00	0	0	0
	Indicator	Unit	t	B4	B5	В6	В7	C1	C2	C3	C4	D
	GWP-total	kg CO ₂	-eq	0	0	3,28E-03	0	0	3,09E-02	5,29E-01	2,44E-02	-4,79E-01
	GWP-fossil	kg CO ₂	-eq	0	0	3,18E-03	0	0	3,09E-02	5,29E-01	2,44E-02	-4,72E-01
	GWP-biogenic	kg CO ₂	-eq	0	0	0.705.05			1 205 05	4,28E-06	3,21E-06	-1,94E-03
	GWP-luluc	kg CO ₂				8,79E-05	0	0	1,28E-05	1,202 00	3,211-00	
Ò		ng co ₂	-eq	0	0	8,79E-05 1,31E-05	0	0	1,26E-05	6,29E-07	1,31E-06	-4,68E-03
	ODP	kg CFC1		0	0							-4,68E-03 -9,10E-03
	ODP AP		1 -eq			1,31E-05	0	0	1,10E-05	6,29E-07	1,31E-06	
		kg CFC1	1 -eq -eq	0	0	1,31E-05 2,18E-10	0	0	1,10E-05 6,99E-09	6,29E-07 4,05E-10	1,31E-06 1,15E-09	-9,10E-03
Œ.	АР	kg CFC1	1 -eq -eq	0	0	1,31E-05 2,18E-10 2,49E-05	0 0	0 0	1,10E-05 6,99E-09 8,87E-05	6,29E-07 4,05E-10 6,63E-05	1,31E-06 1,15E-09 3,30E-05	-9,10E-03 -5,89E-02
	AP EP-FreshWater	kg CFC1 mol H+	1 -eq -eq eq	0 0	0 0	1,31E-05 2,18E-10 2,49E-05 2,29E-07	0 0 0	0 0 0	1,10E-05 6,99E-09 8,87E-05 2,47E-07	6,29E-07 4,05E-10 6,63E-05 4,06E-08	1,31E-06 1,15E-09 3,30E-05 8,51E-08	-9,10E-03 -5,89E-02 -4,01E-04
	AP EP-FreshWater EP-Marine	kg CFC1' mol H+ kg P kg N	1 -eq -eq eq eq	0 0 0	0 0 0	1,31E-05 2,18E-10 2,49E-05 2,29E-07 2,73E-06	0 0 0 0	0 0 0 0	1,10E-05 6,99E-09 8,87E-05 2,47E-07 1,76E-05	6,29E-07 4,05E-10 6,63E-05 4,06E-08 3,18E-05	1,31E-06 1,15E-09 3,30E-05 8,51E-08 3,21E-05	-9,10E-03 -5,89E-02 -4,01E-04 -2,71E-03
	AP EP-FreshWater EP-Marine EP-Terrestial	kg CFC1 mol H+ kg P - c kg N -	1 -eq -eq eq -eq -eq	0 0 0 0	0 0 0 0	1,31E-05 2,18E-10 2,49E-05 2,29E-07 2,73E-06 3,56E-05	0 0 0 0 0	0 0 0 0 0	1,10E-05 6,99E-09 8,87E-05 2,47E-07 1,76E-05 1,96E-04	6,29E-07 4,05E-10 6,63E-05 4,06E-08 3,18E-05 3,44E-04	1,31E-06 1,15E-09 3,30E-05 8,51E-08 3,21E-05 1,27E-04	-9,10E-03 -5,89E-02 -4,01E-04 -2,71E-03 -4,05E-02
	AP EP-FreshWater EP-Marine EP-Terrestial POCP	kg CFC1 mol H+ kg P - (kg N - mol N -	1 -eq -eq eq -eq -eq	0 0 0 0 0	0 0 0 0 0	1,31E-05 2,18E-10 2,49E-05 2,29E-07 2,73E-06 3,56E-05 9,56E-06	0 0 0 0 0	0 0 0 0 0 0	1,10E-05 6,99E-09 8,87E-05 2,47E-07 1,76E-05 1,96E-04 7,52E-05	6,29E-07 4,05E-10 6,63E-05 4,06E-08 3,18E-05 3,44E-04 8,24E-05	1,31E-06 1,15E-09 3,30E-05 8,51E-08 3,21E-05 1,27E-04 3,99E-05	-9,10E-03 -5,89E-02 -4,01E-04 -2,71E-03 -4,05E-02 -1,10E-02

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additio	nal enviro	onme	ental impact ind	icators								
	Indicator		Unit		A1	A2	A3	A4	A5	B1	B2	В3
	PM		Disease inci	dence	1,64E-07	2,13E-08	3,71E-09	6,22E-09	4,04E-09	0	0	0
(m)	IRP ²		kgBq U23	5 -eq	9,67E-02	2,35E-02	7,13E-03	6,72E-03	2,74E-03	0	0	0
	ETP-fv	v ¹	CTUe		6,54E+02	3,95E+00	2,29E+00	1,14E+00	1,45E+01	0	0	0
46.± ************************************	HTP-c	1	CTUh		1,18E-08	0,00E+00	6,10E-11	0,00E+00	2,40E-10	0	0	0
48	HTP-n	c ¹	CTUh		8,92E-07	4,33E-09	1,78E-09	1,25E-09	1,81E-08	0	0	0
	SQP ²	1	dimension	nless	1,49E+01	3,63E+00	1,03E+00	1,08E+00	4,27E-01	0	0	0
Inc	licator		Unit	B4	B5	В6	В7	C1	C2	C3	C4	D
	PM	D	isease incidence	0	0	1,78E-10	0	0	1,89E-09	2,60E-10	5,48E-10	-1,78E-07
(IOI)	IRP ²		kgBq U235 -eq	0	0	7,88E-04	0	0	2,04E-03	5,85E-05	5,15E-04	-1,60E-02
	ETP-fw ¹		CTUe	0	0	1,98E-01	0	0	3,46E-01	1,03E-01	6,19E+01	-5,42E+02
48.* *** B	HTP-c ¹		CTUh	0	0	9,00E-12	0	0	0,00E+00	1,10E-11	6,00E-12	-7,69E-09
₩	HTP-nc ¹		CTUh	0	0	2,22E-10	0	0	3,78E-10	4,44E-10	1,81E-10	-6,53E-07
	SQP ¹		dimensionless	0	0	2,19E-02	0	0	3,27E-01	4,20E-03	2,70E-01	-1,87E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource us	e										
W ->	Indicator		Unit	A1	A2	А3	A4	A5	B1	B2	В3
i i	PERE		MJ	4,23E+00	7,52E-02	8,15E-01	2,20E-02	1,03E-01	0	0	0
	PERM	1	MJ	6,25E-01	0,00E+00	0,00E+00	0,00E+00	-6,12E-01	0	0	0
्र	PERT		MJ	4,86E+00	7,52E-02	8,15E-01	2,20E-02	-5,09E-01	0	0	0
	PENRE		MJ	2,57E+01	5,38E+00	2,61E+00	1,54E+00	7,21E-01	0	0	0
. de	PENRI	М	MJ	1,49E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0	0
IA	PENR	Т	MJ	4,06E+01	5,38E+00	2,61E+00	1,54E+00	7,21E-01	0	0	0
	SM		kg	3,96E-02	0,00E+00	0,00E+00	0,00E+00	7,92E-04	0	0	0
2	RSF		MJ	1,35E-01	2,67E-03	1,43E-01	7,87E-04	5,64E-03	0	0	0
	NRSF		MJ	9,48E-03	9,43E-03	7,62E-04	2,81E-03	5,66E-04	0	0	0
&	FW		m ³	3,14E-02	5,62E-04	2,78E-03	1,64E-04	7,13E-04	0	0	0
	dicator	Unit	B4	B5	В6	В7	C1	C2	C3	C4	D
inc	dicator PERE	Unit MJ	B4 0	B5 0	B6 5,62E-01	B7 0	C1 0	C2 6,68E-03	C3 1,02E-03	C4 8,08E-03	D -1,28E+01
i j	PERE	МЈ	0	0	5,62E-01	0	0	6,68E-03	1,02E-03	8,08E-03	-1,28E+01
I.	PERE PERM	WI	0	0	5,62E-01 0,00E+00	0	0	6,68E-03 0,00E+00	1,02E-03 0,00E+00	8,08E-03 0,00E+00	-1,28E+01 0,00E+00
1	PERE PERM PERT	W1 W1	0 0	0 0	5,62E-01 0,00E+00 5,62E-01	0 0	0 0	6,68E-03 0,00E+00 6,68E-03	1,02E-03 0,00E+00 1,02E-03	8,08E-03 0,00E+00 8,08E-03	-1,28E+01 0,00E+00 -1,28E+01
1 1 1 1 1 1 1 1 1 1	PERE PERM PERT PENRE	M1 M1 M1	0 0 0	0 0 0	5,62E-01 0,00E+00 5,62E-01 4,35E-02	0 0 0	0 0 0 0	6,68E-03 0,00E+00 6,68E-03 4,67E-01	1,02E-03 0,00E+00 1,02E-03 3,46E-02	8,08E-03 0,00E+00 8,08E-03 9,23E-02	-1,28E+01 0,00E+00 -1,28E+01 -4,90E+00
	PERE PERM PERT PENRE PENRM	M1 M1 M1 M1	0 0 0 0	0 0 0 0	5,62E-01 0,00E+00 5,62E-01 4,35E-02 0,00E+00	0 0 0 0	0 0 0 0	6,68E-03 0,00E+00 6,68E-03 4,67E-01 0,00E+00	1,02E-03 0,00E+00 1,02E-03 3,46E-02 -1,49E+01	8,08E-03 0,00E+00 8,08E-03 9,23E-02 0,00E+00	-1,28E+01 0,00E+00 -1,28E+01 -4,90E+00 0,00E+00
	PERE PERM PERT PENRE PENRM PENRT	M1 M1 M1 M1 M1	0 0 0 0 0	0 0 0 0 0	5,62E-01 0,00E+00 5,62E-01 4,35E-02 0,00E+00 4,35E-02	0 0 0 0 0	0 0 0 0 0	6,68E-03 0,00E+00 6,68E-03 4,67E-01 0,00E+00 4,67E-01	1,02E-03 0,00E+00 1,02E-03 3,46E-02 -1,49E+01 -1,49E+01	8,08E-03 0,00E+00 8,08E-03 9,23E-02 0,00E+00 9,23E-02	-1,28E+01 0,00E+00 -1,28E+01 -4,90E+00 0,00E+00 -4,90E+00
	PERE PERM PERT PENRE PENRM PENRT SM	MJ MJ MJ Kg	0 0 0 0 0 0	0 0 0 0 0 0	5,62E-01 0,00E+00 5,62E-01 4,35E-02 0,00E+00 4,35E-02 0,00E+00	0 0 0 0 0 0	0 0 0 0 0 0	6,68E-03 0,00E+00 6,68E-03 4,67E-01 0,00E+00 4,67E-01 0,00E+00	1,02E-03 0,00E+00 1,02E-03 3,46E-02 -1,49E+01 -1,49E+01 0,00E+00	8,08E-03 0,00E+00 8,08E-03 9,23E-02 0,00E+00 9,23E-02 3,09E-05	-1,28E+01 0,00E+00 -1,28E+01 -4,90E+00 0,00E+00 -4,90E+00 1,01E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life -	Waste										
	Indicator		Unit	A1	A2	A3	A4	A5	B1	B2	В3
	HWE		kg	1,36E-02	2,75E-04	2,37E-04	7,93E-05	4,89E-04	0	0	0
Ū	NHW	D	kg	4,94E-01	2,51E-01	9,64E-03	7,48E-02	6,74E-02	0	0	0
æ	RWE)	kg	8,68E-05	3,67E-05	7,09E-06	1,05E-05	2,83E-06	0	0	0
Inc	licator	Unit	B4	B5	В6	В7	C1	C2	C3	C4	D
	HWD	kg	0	0	2,79E-05	0	0	2,41E-05	0,00E+00	1,03E-02	-4,01E-03
Ū	NHWD	kg	0	0	3,35E-03	0	0	2,27E-02	0,00E+00	2,90E-01	-2,11E-01
8	RWD	kg	0	0	3,89E-07	0	0	3,18E-06	0,00E+00	5,53E-07	-1,32E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - O	utput flow										
In	dicator		Unit	A1	A2	A3	A4	A5	B1	B2	В3
@ >	CI	RU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0	0
\$\\	М	FR	kg	0,00E+00	0,00E+00	2,54E-03	0,00E+00	2,86E-03	0	0	0
DØ	М	ER	kg	0,00E+00	0,00E+00	2,90E-04	0,00E+00	4,85E-02	0	0	0
F D	Е	EE	МЈ	0,00E+00	0,00E+00	4,45E-04	0,00E+00	3,81E-02	0	0	0
DØ	E	ET	MJ	0,00E+00	0,00E+00	6,74E-03	0,00E+00	5,77E-01	0	0	0
Indicat	tor	Unit	B4	B5	В6	В7	C1	C2	C3	C4	D
Ø▷	CRU	kg	0	0	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
\$>	MFR	kg	0	0	0,00E+00	0	0	0,00E+00	1,40E-01	1,58E-05	-3,94E-03
DF	MER	kg	0	0	0,00E+00	0	0	0,00E+00	1,76E-01	1,17E-06	-5,19E-04
50	EEE	MJ	0	0	0,00E+00	0	0	0,00E+00	3,40E-01	3,19E-05	-1,27E-03
DØ.	EET	MJ	0	0	0,00E+00	0	0	0,00E+00	5,15E+00	4,83E-04	-1,92E-02

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Unit	At the factory gate									
kg C	0,00E+00									
kg C	1,86E-02									
	kg C									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Italy (kWh)	ecoinvent 3.6	426,14	g CO2-eg/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

No effect on in-door environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products												
Indicator	Unit	Unit		A2	A3	A4	A5	B1	B2	В3		
GWPIOBC	kg CO ₂	kg CO ₂ -eq		3,59E-01	1,97E-01	1,02E-01	6,04E-02	0	0	0		
Indicator	Unit	B4	B5	В6	В7	C1	C2	C3	C4	D		
GWPIOBC	kg CO ₂ -eq	0	0	3,28E-03	0	0	3,09E-02	5,29E-01	2,48E-02	-2,94E-01		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization.

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Philis et al., (2022). EPD generator for NPCR 027 part B for electrical wires and cables, background information for EPD generator application and LCA data, LCA.no Report number: 03.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwagian EPD foundation. Version 2.0 published 24.03.2021.

EPD Norway (2022). NPCR 027 Part B for electrical cables and wires. The Norwagian EPD foundation. Version 2.0 published 01.03.2022.

@ and narga	Program operator and publisher	Phone:	+47 977 22 020
@ epd-norge	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
TECCOL	Owner of the declaration:	Phone:	51 73 37 00
TECCON	TECCON Norge AS	e-mail:	jan.vestergaard@teccon.no
	Mekjarvik 18, 4072 Randaberg, Norway	web:	teccon.no
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal