

PRODUCT ENVIRONMENTAL PROFILE Environmental Product Declaration ABB YO/ YO-C Coils (CN) November 2024

REGISTRATION NUMBE	ER	IN COMPLIANCE WITH PCR-ED4-EN-2021 09 06			
ABBG-00385-V01.01-EN		SUPPLEMENTED BY PSR-0005-ED3.1-EN-2023 12 08			
VERIFIER ACCREDITAT	ION NUMBER	INFORMATION AND REFERENCE DOCUMENTS			
VH50		www.pep-ecopassport.org			
DATE OF ISSUE		VALIDITY PERIOD			
11-2024		5 years			
INDEPENDENT VERIFIC	CATION OF THE DECLARATION AND DATA,	IN COMPLIANCE WITH ISO 14025: 2006			
INTERNAL	EXTERNAL 🗵				
THE PCR REVIEW WAS	CONDUCTED BY A PANEL OF EXPERTS CH	IAIRED BY JULIE ORGELET (DDEMAIN)			
PEP ARE COMPLIANT	WITH XP C08-100-1 :2016 OR EN 50693:20				
THE ELEMENTS OF TH	VITH ELEMENTS FROM ANOTHER PROGRAM.				
DOCUMENT IN COMPL ENVIRONMENTAL DEC		MENTAL LABELS AND DECLARATIONS. TYPE III			
© Copyright 2022 ABB	All rights reserved				

EPD Owner	ABB S.p.A., located at Via Luciano Lama, 33, Sesto San Giovanni (MI), Italy www.abb.com
Manufacturer name and address	ABB Xiamen G48G+95R, Huli District, Xiamen, Fujian, China, 361015
Company contacts	EPD_ELSP@in.abb.com
Reference product	YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc
Description of the product	Tmax XT and Emax 2 coils are used to remotely open and close circuit breakers. These coils are mounted inside circuit breakers and housed in designated loca- tions. Coils up to Tmax XT XT6 are available in both uncabled and cabled versions to provide maximum flexibility for users, while coils for Tmax XT XT7-XT7M and Emax 2 are available in a single configuration.
Functional unit	The functional unit to this study is a single Coil Accessory to allow Opening or Closing the circuit of a TMAX XT series of molded case circuit breaker and Emax 2 E1.2 to E6.2 ACB over a 20-year period, with a nominal voltage of 12Vdc to 525 Vac used in this analysis.
Other products covered	YO/YO-C XT5/XT6 FP/W 12Vdc-525Vac
Reference lifetime	20 years
Product category	other equipment "Passive product - non-continuous operation"
Use Scenario	Load rate: - Use time rate: 30% of RLT
Geographical representative- ness	Raw materials & Manufacturing: [Global] Assembly: [Global] Distribution / Use: [Global] specific sales mix EoL: [Global]
Technological rep- resentativeness	Materials and processes data are specific to the production of YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc
LCA Study	This study is based on the LCA study described in the LCA report 1SDH002453A1001
EPD type	Product Family Declaration
EPD scope	"Cradle to grave"
Year of reported primary data	2022
LCA software	SimaPro 9.6.0.1 (2024)
ECA Soltware	
LCI database	Ecoinvent v3.10.1 (2024)

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	2/18	
© Copyright 2022 ABB. All rights reserved.							

Contents

ABB Purpose & Embedding Sustainability	4
General Information	4
Constituent Materials	6
LCA background information	
Functional unit and Reference Flow	7
System boundaries and life cycle stages	7
Temporal and geographical boundaries	8
Boundaries in the life cycle	8
Data quality	8
Environmental impact indicators	
Allocation rules	8
Limitations and simplifications	9
Energy Models	
Inventory analysis	.10
Environmental impacts	.13
Additional environmental information	. 17
References	.18

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	3/18	
© Copyright 2022 ABB. All rights reserved.							

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 105 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control. ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

Located in Xiang'an Torch Industrial Park of Xiamen, ABB Xiamen Hub, with an investment of 2billion yuan (approximate \$300 million) and covering an area of ~ 430000 square meters, officially came into service on Nov. 2018. It integrated eight ABB companies in Xiamen to createsmarter production workshop and workplace with higher efficiency through optimized resource allocation and unified management. ABB in Xiamen, with nearly 3,500 employees in total, has a full range of businesses including R&D, manufacturing, engineering, sales and services, as well as ABB China's supply chain management and corporate functions.

The ABB Xiamen Hub is ABB's biggest manufacturing centre for middle & low voltage switchgears and air circuit breakers. With powerful R&D and innovation capability, it is home to:

- One of ABB's largest R&D centres for NeoGear and MNS low-voltage systems.
- ABB's first digitally connected remote service centre in China.
- ABB Technology Experience Centre covering full ABB solution & focusing on user experience.

As a modernized large industrial park, ABB Xiamen Hub widely implements environment friendly materials, energy - saving technique and intelligent solutions. They include BMS system for centralized control and monitoring of equipment, PMCS solution for comprehensive management of energy consumption, i-Bus® intelligent building control system for lighting control, rainwater recovery system, and electric vehicle charging facility. With all these solutions, ABB Xiamen Hub has set an example for building a green, low - carbon and intelligent industrial park

Approved Public ABBG-00385-V01.01-EN 1SDH002467A1001	A.004	en	4/18

Product cluster

ABB's new TMAX XT series of Molded Case circuit-breakers, combine the finest protection that has always characterized ABB's molded case circuit breakers with the most precise metering and connectivity functionalities, providing designers, installers and end-users exclusive solutions for their daily needs. Suitable for applications from 160 A to 1600 A, the TMAX XT offers exceptional breaking capacity for all voltages and applications. Combined with high-precision electronic relays of the smallest sizes, the new series protects equipment investments and ensures uninterrupted operation and high availability.

ABB's Emax 2 air circuit breaker is a multifunctional platform able to manage the next generation of electrical plants such as microgrids, evolving into a true Power Manager. Emax 2 is the first air circuit breaker that matches all the new grid requirements. It enables a direct communication to the new energy management cloud-computing platform ABB Ability™. Energy and Asset Manager

Coils are used for to allow Opening or Closing the circuit of a TMAX XT series of molded case circuit breaker and Emax 2 E1.2 to E6.2 ACB over a 20-year period, with a nominal voltage of 12Vdc to 525 Vac.

Based on the frame size and functionality, the coil have been categorized into six groups. Along the whole Coils product cluster, a set of different build configurations have been covered by this analysis. The SimaPro LCA model has been fully parametrized to include different configurations.

Official declarations 1SDL000282R1377 [13] and 1SDL000282R1378 [14] states compliance of ABB molded case circuit breakers and air circuit breakers respectively to RoHS II and REACH regulations; annex 1SDL000571R0 [15] provides exemptions considered for RoHS.

© Copyright 2022 ABB. All rights reserved.							
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	5/18	
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	

Constituent Materials

YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

The representative product is YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc which weighs 0.254 kg including its paper documentation and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
	Steel	M-119	83.2	32.7%
Metals	Cu and Cu Alloys	M-121	34.3	13.5%
	Stainless Steel	M-100	0.4	0.2%
Plastics	Polyamide	M-258	12.2	4.8%
	Polyethylene	M-251	10.0	3.9%
	Polycarbonate	M-254	0.6	0.2%
	Unsaturated Polyester	M-301	0.1	0.1%
Other	Paper/Cardboard	M-341	90.8	35.6%
	Others	N/A	23.0	9.0%
Total			254.5	100.0%
	Table 1. Weight of materials $VO_{-}CX^{-}$	TE VT6 E / D 110 240VAC	110 250100	•

Table 1: Weight of materials YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

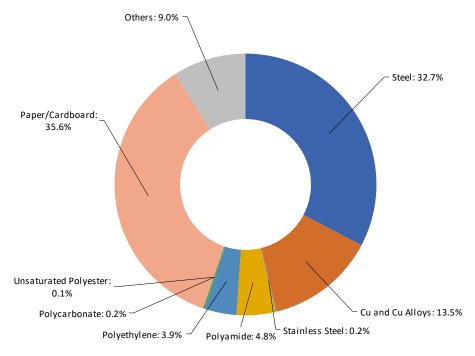


Figure 1: Composition of YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

Packaging for reference product YO-C XT5-XT6 F/P 110-240VAC/110-250VDC weighs 70.0 g, with the following substance composition:

Material	Unit	YO-C XT5-XT6 F/P 110-240VAC/110-250VDC
Corrugated Cardboard	g	70.0
Polyethylene	g	-

Table 2: Weight of packaging materials YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	6/18	
© Copyright 2022 ABB. All rights reserved.							

_
•
•

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

The functional unit to this study is a single Coil Accessory to allow Opening or Closing the circuit of a TMAX XT series of molded case circuit breaker and Emax 2 E1.2 to E6.2 ACB over a 20-year period, with a nominal voltage of 12Vdc to 525 Vac used in this analysis as per 3.15 "Specific rules for the 'Other Equipment' family". YO are categorized in "Passive product - non-continuous operation" PSR[2].

The Reference Flow of the study is a YO-C XT5-XT6 F/P 110-240VAC/110-250VDC including its packaging with mass described in chapter 1.3, table 1 & 2.

System boundaries and life cycle stages

The life cycle of an Coil, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semi-finished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems.

Manufacturing	Distribution	Installa- tion	Use	End-of-Life (EoL)
Acquisition of raw materials Transport to manufacturing site Components/parts manufacturing Assembly Packaging EoL treatment of generated waste	Transport to distribu- tor/logistic center Transport to place of use	Installation EoL treat- ment of generated waste (packaging)	Usage Mainte- nance	Deinstalla- tion Collection and transport EoL treat- ment

Table 3: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	7/18
© Copyright 202	2 ABB. All rights reserved.		I			

Temporal and geographical boundaries

The ABB component suppliers are sourced all over the world. All primary data collected are from 2022, which is a representative production year. Secondary data are also representative for this year, as provided by econvent [6].

The selected ecoinvent [6] processes in the LCA model have a global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology, and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to PCR [1] and EN 50693 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR [1] and the EN 50693:2019 [3] standard establish four indicators for climate change: Climate change (total) which includes all greenhouse gases; Climate change (fossil fuels); Climate change (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; Climate change (land use) - land use and land use transformation. Other indicators as per the PCR [1].

Allocation rules

Allocation coefficients are based on the per piece consumption for electricity, water apart from assembly processes. The allocation of the total amount of waste generated by the production line as well, has been described in Annex 1SDH002454A1001 [11].

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	8/18			
© Copyright 2022	© Copyright 2022 ABB. All rights reserved.								

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km assuming no specific data available PCR [1]. This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Surface treatments like galvanizing, silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model. Scraps for metal working and plastic processes are included when already defined in Ecoinvent [6].

The only limitations and simplifications applied to this study are listed in the following table.

Category	Description
Packaging	An average packaging content of 5% of the mass of the reference equipment has been considered as follow- Wood 50%, Cardboard 40%, Low density poly-ethylene 10%.
Tranports	Specific transport parameters along the entire supply chain of the reference products have been considered as representative for all the products covered by the study
MU Emissions	Impacts related to the production, transportation and installation of capital goods (buildings, infrastructure, machinery, internal transport packaging) and general operations that cannot be directly allocated to products have been excluded
Та	ble 4: Limitation and simplification used in each LCA stage.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	9/18			
© Copyright 2022	© Copyright 2022 ABB. All rights reserved.								

Energy Models

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material ex- traction and pro- cessing	A1-A2	Electricity, {RoW} market group for Cut-off Electricity, {GLO} market group for Cut-off	Based on materials and sup- plier's locations
Manufacturing	A3	Electricity, low voltage {BG} market for electricity, low voltage Cut-off, S Electricity, low voltage {CN} market group for electricity, low voltage Cut- off, S	-
Installation (Packaging EoL)	A5	Electricity, {GLO} market group for Cut-off	-
Use Stage	B1	Electricity, [country]x market for Cut- off, S **	Low voltage, based on 2022 country sales mix
EoL	C1-C4	Electricity, {GLO} market group for Cut-off	

Table 5: Energy models used in each LCA stage.

** Please refer the use phase for further description

ſ	<	
I	\equiv	

Inventory analysis

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP and Windchill ERP were used. They are a list of all the components and assemblies that constitute the finished product, organized by hierarchy level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area, volume and weight data, taken from technical drawings/datasheets. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Searates).

All primary data collected from ABB are from 2022, which was a representative production year. The ecoinvent cut-off by classification system processes [6] are used to represent the LCA model.

To improve both the inventory and modelling phase of the product, a specific modular dataset framework has been adopted. Raw materials and Manufacturing processes datasets from Ecoinvent database [6] have been clustered and listed inside two distinct mater data tables ABB Raw Materials and ABB Materials & Processes. Data used in the analysis is not older than 10 years.

STATUS SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	10/18

Manufacturing stage

The Coils is composed of a multitude of components, all of which are made from of numerous materials.

All the Coils components have been modelled according to their specific raw materials and manufacturing processes.

The single use packaging as well as paper documentation are also included in the analysis in the manufacturing stage. ABB receives packaged product from supplier, sorts, repacks and delivers to the customer according to the orders.

Most of the inputs to the products' manufacturing stage are already produced component parts from the supply chain.

The entire supplier's network has been modelled with the calculation of each transportation stage, from the first manufacturing supplier to the next.

All the distances from the last subassembly suppliers' factories to the ABB facility have been calculated.

The complete energy mix has been modeled considering the GO on energy origins provided to ABB for the year 2022.

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific 2022 sales mix data for cluster (SAP ERP sales data as a source). An additional 1000km distance is considered as per the PCR [1].

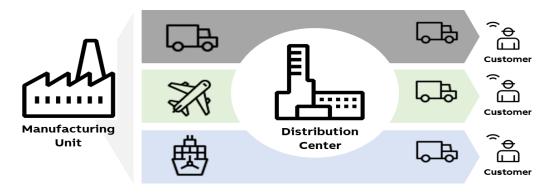


Figure 2: Distribution methodology.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the coil.

For the disposal of the packaging after installation of the product at the end of its life, a transport distance of 100 km (according to PSR [2]) was assumed).

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest average data for 2019 available, for countries other than EU 100% incineration has been considered.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	ABBG-00385-V01.01-EN	-V01.01-EN 1SDH002467A1001		en	11/18		
© Copyright 2022 ABB. All rights reserved.								

Use

Use and maintenance are modelled according to the PCR [1].

During the use phase, Coils dissipate some electricity due to power losses. They are calculated according to the data provided in the catalogue of the circuit breaker and following the PCR [1] & PSR [2] rules:

Parameters	YO	
lu	[A]	-
lu	[%]	-
h/year	[h]	-
RSL	[years]	20
Time operating coefficient	[%]	30

Table 8: Use phase parameters

The formula for the calculation of the electricity consumed is shown below and it is described as follows, where P_{use} is the power consumed by the switch at a given value of voltage:

E_{use} [kWh]=
$$\frac{P_{use} * N * RSL * P(W)/Cycle}{1000}$$

The Energy model used for this phase has been modeled based on the 2022 actual sales mix data (SAP ERP sales data as a source). From Ecoinvent [6] database, the low voltage electricity country mix for each country_(x) has been selected with its respective percentage on the total sales mix (Electricity, low voltage [Country] | market for | Cut-off, S).

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9].

Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]).

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00385-V01.01-EN	01.01-EN 1SDH002467A1001 A		en	12/18			
© Copyright 2022 A	© Copyright 2022 ABB. All rights reserved.								

Environmental impacts

The following table show the environmental impact indicators of the life cycle of a YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc as indicated by PCR [1] and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different stages (manufacturing, distribution, installation, use and end-of-life).

Impact category	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
GWP-total	kg CO2 eq	1.05E+01	6.47E+00	7.31E-02	1.13E-01	3.72E+00	9.04E-02
GWP-fossil	kg CO2 eq	1.03E+01	6.48E+00	7.31E-02	3.06E-03	3.69E+00	8.41E-02
GWP- biogenic	kg CO2 eq	1.16E-01	-2.24E-02	4.45E-06	1.10E-01	2.22E-02	6.26E-03
GWP-luluc	kg CO2 eq	6.62E-03	5.03E-03	2.35E-05	8.87E-07	1.52E-03	4.90E-05
ODP	kg CFC11-eq	3.73E-07	3.60E-07	1.14E-09	4.29E-11	1.05E-08	5.53E-10
AP	mol H+ eq	8.64E-02	6.56E-02	3.10E-04	2.22E-05	2.02E-02	2.44E-04
EP- freshwater	kg P eq	5.87E-04	5.02E-04	5.35E-07	3.30E-08	8.27E-05	1.88E-06
EP-marine	kg N eq	1.05E-02	6.31E-03	1.14E-04	9.42E-06	4.00E-03	5.29E-05
EP- terrestrial	mol N eq	1.21E-01	7.52E-02	1.25E-03	9.84E-05	4.42E-02	5.48E-04
POCP	kg NMVOC eq	4.09E-02	2.84E-02	4.43E-04	2.64E-05	1.19E-02	1.78E-04
ADP-m&m	kg Sb eq	1.11E-03	1.10E-03	1.55E-07	6.36E-09	1.57E-05	2.62E-08
ADP-fossil	МЈ	1.30E+02	9.20E+01	1.04E+00	2.73E-02	3.63E+01	7.10E-01
WDP	m3 of equiv. depriv.	1.93E+00	1.47E+00	4.46E-03	2.37E-03	4.42E-01	6.32E-03
PENRE	MJ	1.30E+02	9.15E+01	1.04E+00	2.73E-02	3.63E+01	7.10E-01
PENRM	MJ	5.66E-01	5.66E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	1.30E+02	9.20E+01	1.04E+00	2.73E-02	3.63E+01	7.10E-01
PERE	MJ	1.03E+01	5.83E+00	1.10E-02	7.70E-04	4.38E+00	5.88E-02
PERM	MJ	1.19E+00	1.19E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	1.15E+01	7.03E+00	1.10E-02	7.70E-04	4.38E+00	5.88E-02
SM	kg	1.66E-02	1.66E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PET	MJ	1.42E+02	9.91E+01	1.05E+00	2.81E-02	4.07E+01	7.69E-01
FW	m3	5.59E-02	4.46E-02	1.33E-04	8.24E-05	1.08E-02	2.44E-04
HWD	kg	9.10E-04	8.65E-04	7.06E-06	2.60E-07	3.58E-05	1.97E-06
N-HWD	kg	6.91E-01	3.62E-01	6.84E-02	1.90E-03	9.32E-02	1.65E-01
RWD	kg	1.33E-04	9.23E-05	1.90E-07	1.05E-08	3.95E-05	1.16E-06
CfR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MfR	kg	2.22E-01	6.78E-02	0.00E+00	0.00E+00	0.00E+00	1.54E-01
MfER	kg	8.79E-02	6.42E-03	0.00E+00	6.94E-02	0.00E+00	1.21E-02
EN	MJ by energy vector	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PM	disease inc.	5.65E-07	2.88E-07	5.78E-09	2.36E-10	2.69E-07	2.82E-09
IRP	kBq U-235 eq	1.98E-01	1.44E-01	3.05E-04	1.58E-05	5.23E-02	1.80E-03
ETP-fw	CTUe	1.18E+02	1.06E+02	2.09E-01	1.28E-01	1.17E+01	4.39E-01
HTP- c	CTUh	5.20E-08	4.82E-08	2.92E-10	2.86E-11	3.36E-09	8.75E-11
HTP- nc	CTUh	4.05E-07	3.73E-07	6.98E-10	2.34E-10	2.97E-08	9.87E-10
SQP	Pt	4.40E+01	3.47E+01	8.24E-01	1.59E-02	8.33E+00	1.43E-01

Table 6: Impact indicators for YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	13/18			
© Copyright 202	© Copyright 2022 ABB. All rights reserved.								

Impact category	Unit	YO-C XT5-XT6 F/P 110- 240VAC/110-250VDC
Biogenic Carbon content of the product	kg	0.0105
Biogenic Carbon content of the associated pack- aging	kg	0.0251

Table 7: Inventory flow other indicators

Environmental impact indicators

	ilpact indicators						
GWP-total	Global Warming Potential total (Climate change)						
GWP-fossil	Global Warming Potential fossil						
GWP-biogenic	Global Warming Potential biogenic						
GWP-luluc	Global Warming Potential land use and land use change						
ODP	Depletion potential of the stratospheric ozone layer						
AP	Acidification potential						
EP-freshwater	Eutrophication potential - freshwater compartment						
EP-marine	Eutrophication potential - fraction of nutrients reaching marine end compartment						
EP-terrestrial	Eutrophication potential -Accumulated Exceedance						
POCP	Formation potential of tropospheric ozone						
ADP-m&m	Abiotic Depletion for non-fossil resources potential						
ADP-fossil	Abiotic Depletion for fossil resources potential						
WDP	Water deprivation potential						
Resource use inc	dicators						
PERE	Use of renewable primary energy excluding renewable primary energy resources used as raw material						
PERM	Use of renewable primary energy resources used as raw material						
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)						
PENRE	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material						
PNERM	Use of non-renewable primary energy resources used as raw material						
PENRT	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)						
PET	Total use of primary energy in the lifecycle						
Secondary mate	rials, water and energy resources						
SM	Use of secondary materials						
RSF	Use of renewable secondary fuels						
NRSF	Use of non-renewable secondary fuels						
FW	FW: Net use of fresh water						
Waste category	indicators						
HWD	Hazardous waste disposed						
N-HWD	Non-hazardous waste disposed						
RWD	Radioactive waste disposed						
Output flow indicators							

•	
CfR	Components for reuse
MfR	Materials for recycling
MfER	Materials for energy recovery

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE					
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	14/18					
© Copyright 2022 ABB. All rights reserved.											

EN Exported energy

Other indicators

PM	Emissions of Fine particles						
IRP	Ionizing radiation, human health						
ETP-fw	Ecotoxicity, freshwater						
HTP- c	Human toxicity, carcinogenic effects						
HTP- nc	Human toxicity, non-carcinogenic effects						
SQP	Impact related to Land use / soil quality						

Extrapolation for Homogeneous environmental family

This PEP covers different build configurations than representative product. All the analyzed configurations have the same main functionality, product standards and manufacturing technology.

The different life cycle stages can be extrapolated to other products of the same homogeneous environmental family by applying a rule of proportionality to the parameters in the following tables, divided by different life cycle stages.

LCA Phase:	Manufacturing
------------	---------------

Product	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	ODP	AP	EP-freshwater	EP-marine	EP-terrestrial	РОСР	ADP-minerals & metals	ADP-fossil	WDP
YO XT5-XT6 12 Vdc	0.98	0.98	0.96	0.97	0.99	0.87	0.93	0.93	0.92	0.94	0.90	0.98	0.90
YO XT5-XT6 2460 Vac/dc	0.97	0.97	1.02	0.96	0.99	0.82	0.90	0.91	0.89	0.92	0.87	0.97	0.87
YO XT5-XT6 110240 Vac - 110250 Vdc	0.97	0.97	1.02	0.95	0.99	0.83	0.90	0.91	0.89	0.92	0.87	0.97	0.87
YO XT5-XT6 380440 Vac	0.98	0.98	1.03	0.96	0.99	0.83	0.91	0.92	0.90	0.92	0.87	0.98	0.88
YO XT5-XT6 480525 Vac	0.97	0.97	1.02	0.95	0.99	0.83	0.90	0.91	0.89	0.92	0.87	0.97	0.87
YO-C XT5-XT6 F/P 12 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 2460 Vac/dc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 380440 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 480525 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 12 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W2460 Vac/dc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 110240 Vac - 110250 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 380440 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 480525 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 12 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 2460 Vac/dc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 110240 Vac - 110250 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 380440 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 480525 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 8: Extrapolation factors for Manufacturing stage

Reference product: YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc

ECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
ublic	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	15/18
u		blic ABBG-00385-V01.01-EN	blic ABBG-00385-V01.01-EN 1SDH002467A1001	blic ABBG-00385-V01.01-EN 1SDH002467A1001 A.004	blic ABBG-00385-V01.01-EN 1SDH002467A1001 A.004 en

LCA Phase: Distribution

Product	LCA Phase	Factor
YO XT5-XT6 12 Vdc		0.90
YO XT5-XT6 2460 Vac/dc		0.88
YO XT5-XT6 110240 Vac - 110250 Vdc		0.89
YO XT5-XT6 380440 Vac		0.89
YO XT5-XT6 480525 Vac		0.89
YO-C XT5-XT6 F/P 12 Vdc		1.00
YO-C XT5-XT6 F/P 2460 Vac/dc		1.00
YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc		1.00
YO-C XT5-XT6 F/P 380440 Vac		1.00
YO-C XT5-XT6 F/P 480525 Vac	Distribution	1.00
YO-C XT5 W 12 Vdc	Distribution	1.00
YO-C XT5 W2460 Vac/dc		1.00
YO-C XT5 W 110240 Vac - 110250 Vdc		1.00
YO-C XT5 W 380440 Vac		1.00
YO-C XT5 W 480525 Vac		1.00
YO-C XT6 W 12 Vdc		1.00
YO-C XT6 W 2460 Vac/dc		1.00
YO-C XT6 W 110240 Vac - 110250 Vdc		1.00
YO-C XT6 W 380440 Vac		1.00
YO-C XT6 W 480525 Vac		1.00

Table 9: Extrapolation factors for Distribution stage Reference product: YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

LCA Phase: Installation

Installation phase impacts are common across all variants of the product.

LCA Phase: Use

Coil Voltage	LCA Phase	Factor
12		1.4
24-60		2.0
110-250	Use	1.0
380-440		1.9
480-525		2.4

Table 10: Use phase Extrapolation factors Reference product: YO-C XT5-XT6 F/P 110-240Vac/110-250Vdc

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	16/18				
© Copyright 2022 ABB. All rights reserved.										

LCA Phase: End of Life

Product	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	ODP	AP	EP- freshwater	EP-marine	EP-terrestrial	РОСР	ADP-minerals & metals	ADP-fossil	WDP
YO XT5-XT6 12 Vdc	0.67	0.65	0.97	0.44	0.47	0.48	0.43	0.57	0.54	0.53	0.56	0.45	0.44
YO XT5-XT6 2460 Vac/dc	0.63	0.60	0.97	0.36	0.40	0.41	0.36	0.51	0.47	0.46	0.50	0.38	0.37
YO XT5-XT6 110240 Vac - 110250 Vdc	0.63	0.61	0.97	0.37	0.40	0.41	0.37	0.51	0.48	0.47	0.51	0.39	0.38
YO XT5-XT6 380440 Vac	0.66	0.63	0.97	0.41	0.44	0.45	0.41	0.55	0.51	0.50	0.54	0.43	0.42
YO XT5-XT6 480525 Vac	0.63	0.61	0.97	0.37	0.40	0.41	0.37	0.51	0.48	0.47	0.51	0.39	0.38
YO-C XT5-XT6 F/P 12 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 2460 Vac/dc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 110- 240Vac/110-250Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 380440 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5-XT6 F/P 480525 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 12 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W2460 Vac/dc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 110240 Vac - 110250 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 380440 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT5 W 480525 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 12 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 2460 Vac/dc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 110240 Vac - 110250 Vdc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 380440 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
YO-C XT6 W 480525 Vac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 11: Extrapolation factors for EOL Phase

Reference product: YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

Additional environmental information

According to the waste treatment scenario calculation in Simapro [7], based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

	YO-C XT5-XT6 F/P 110-240VAC/110-250VDC				
Recyclability potential	83.6%				

Table 12: Recyclability potential of YO-C XT5-XT6 F/P 110-240VAC/110-250VDC

© Copyright 2022 ABB. All rights reserved.								
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	17/18		
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		

References

- [1] PCR "PEP-PCR-ed4-EN-2021_09_06" Product Category Rules for Electrical, Electronic and HVAC-R Products (published: 6th September 2021)
- [2] PSR "PSR-0005-ed3.1-EN-2023 12 08" SPECIFIC RULES FOR Electrical switchgear and control gear Solutions
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006/Amd 1:2020 Environmental management -Life cycle assessment -Principles and framework
- [5] ISO 14044:2006/Amd:1:2017/Amd2:2020 Environmental management Life cycle assessment - Requirements and guidelines
- [6] ecoinvent v3.10.1 (2024). ecoinvent database version 3.10 (https://ecoinvent.org/)
- [7] SimaPro Software version 9.6.0.1 PRé Sustainability
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019).
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment -Edition 1.0 2012-10
- [10] https://www.ecosystemspa.com/
- [11] 1SDH002465A1001_Accessories_GP2_BOM_Process
- [12] 1SDH002464A1001_Accessories_GP2_Data
- [13] 1SDL000282R1377 RoHS II (MCCBs and ACBs)
- [14] 1SDL000282R1378 REACH (MCCBs and ACBs)
- [15] 1SDL000571R0 Ver 01 RoHS Exemptions (MCCBs and ACBs)

© Copyright 2022 ABB. All rights reserved.							
Approved	Public	ABBG-00385-V01.01-EN	1SDH002467A1001	A.004	en	18/18	
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	