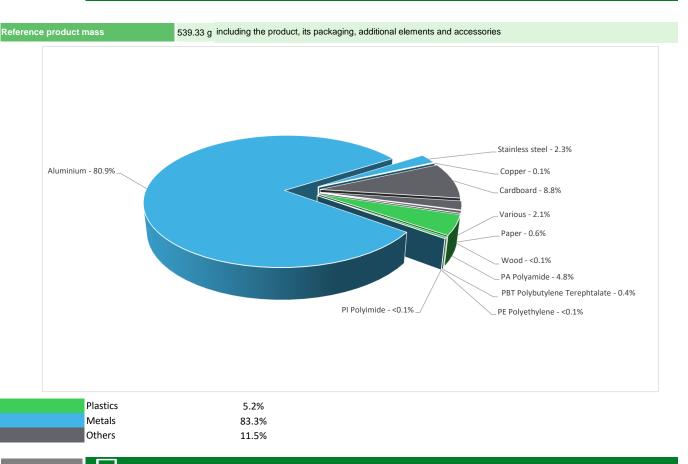

Product Environmental Profile

ClimaSys Resistance heater



General information

Reference product	ClimaSys Resistance heater - NSYCR55WU2
Description of the product	Resistance heaters help prevention of condensation creation inside electrical panels due to high humidity or low temperature. It generates and diffuse suitable heat inside the switchboard when the temperature is too low. Target is to keep electrical components to operate safely (without condensation) and a nominal temperature and humidity environment
Functional unit	The resistance heaters prevent the formation of condensation and guarantee the ideal temperature for the correct operation of the electronic components in the enclosure during 10 years.
Specifications are:	Power = 55W Voltage = 110-250 V AC Ambient air temperature for operation = -40 to 70 °C H = 200mm D = 70mm IP = IP20-IEC 60529

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(1) Additional environmental information

End Of Life

Recyclability potential:

89%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Environmental impacts

Reference service life time	10 years									
Product category	Other equipments - Active product									
Life cycle of the product	The manufacturing, the distribution, the installatio	n, the use and the end of life w	ere taken into consideration in t	his study						
Electricity consumtion	The electricity consumed during manufacturing progenerates a negligable consumption	rocesses is considered for each	n part of the product individually	, the final assembly						
Installation elements	The product does not require any installation ope	rations								
Use scenario	See PSR	See PSR								
Time representativeness	The collected data are representative of the year 2025									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.									
Geographical	Final assembly site Use phase End-of-life									
representativeness	SUZHOU CITY, China Europe Europe									
	[A1 - A3]	[A5]	[B6]	[C1 - C4]						
Energy model used	Electricity Mix; Low voltage; 2020; China, CN	No energy used	Electricity Mix; Low voltage; 2020; Europe, EU-27	Global, European and French datasets are used.						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators		ClimaSys Resi	stance heater -	NSYCR55WU2				
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	9.81E+02	5.74E+00	1.07E+00	0*	9.74E+02	4.71E-01	-5.95E+00
Contribution to climate change-fossil	kg CO2 eq	9.59E+02	5.57E+00	1.07E+00	0*	9.52E+02	4.59E-01	-5.83E+00
Contribution to climate change-biogenic	kg CO2 eq	2.17E+01	1.65E-01	0*	2.55E-03	2.15E+01	1.26E-02	-1.24E-01
Contribution to climate change-land use and land use change	e kg CO2 eq	2.18E-07	2.80E-08	0*	0*	0*	1.90E-07	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	6.30E-06	1.16E-06	9.40E-07	6.58E-10	4.17E-06	2.57E-08	-8.07E-07
Contribution to acidification	mol H+ eq	5.15E+00	4.84E-02	4.40E-03	0*	5.10E+00	2.20E-03	-4.00E-02
Contribution to eutrophication, freshwater	kg P eq	2.37E-03	3.67E-05	0*	1.16E-06	2.33E-03	2.22E-06	-2.32E-05
Contribution to eutrophication marine	kg N eq	6.04E-01	4.65E-03	2.00E-03	6.47E-05	5.96E-01	4.80E-04	-3.32E-03
Contribution to eutrophication, terrestrial	mol N eq	9.64E+00	5.04E-02	2.17E-02	0*	9.56E+00	5.51E-03	-3.62E-02
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.92E+00	1.63E-02	7.24E-03	0*	1.89E+00	1.51E-03	-1.20E-02
Contribution to resource use, minerals and metals	kg Sb eq	3.29E-04	1.37E-05	0*	0*	3.16E-04	7.90E-08	-1.98E-05
Contribution to resource use, fossils	MJ	2.35E+04	9.90E+01	1.33E+01	0*	2.34E+04	7.03E+00	-8.11E+01
Contribution to water use	m3 eq	7.53E+01	1.31E+00	5.41E-02	0*	7.38E+01	1.01E-01	-1.20E+00

Inventory flows Indicators	ClimaSys Resistance heater - NSYCR55WU2							
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5.47E+03	4.82E+00	0*	0*	5.47E+03	0*	-3.68E+00
Contribution to use of renewable primary energy resources used as raw material	MJ	1.03E+00	1.03E+00	0*	0*	0*	0*	-7.03E-01
Contribution to total use of renewable primary energy resources	MJ	5.47E+03	5.85E+00	0*	0*	5.47E+03	0*	-4.38E+00
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	2.35E+04	9.82E+01	1.33E+01	0*	2.34E+04	7.03E+00	-8.11E+01
Contribution to use of non renewable primary energy resources used as raw material	MJ	8.17E-01	8.17E-01	0*	0*	0*	0*	-9.44E-09
Contribution to total use of non-renewable primary energy resources	MJ	2.35E+04	9.90E+01	1.33E+01	0*	2.34E+04	7.03E+00	-8.11E+01
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of freshwater	m³	1.76E+00	3.05E-02	1.26E-03	0*	1.73E+00	3.06E-03	-2.80E-02
Contribution to hazardous waste disposed	kg	2.84E+01	1.53E+00	0*	0*	2.69E+01	3.59E-03	-1.93E+00
Contribution to non hazardous waste disposed	kg	1.61E+02	1.42E+01	0*	2.18E-02	1.47E+02	1.81E-01	-1.02E+01
Contribution to radioactive waste disposed	kg	4.52E-02	1.03E-02	2.12E-04	0*	3.46E-02	2.37E-05	-8.06E-03
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	5.06E-01	6.62E-02	0*	0*	0*	4.40E-01	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	1.11E-02	4.66E-03	0*	2.11E-03	0*	4.35E-03	0.00E+00

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0.00E+00

Contribution to biogenic carbon content of the associated packaging kg of C 1.34E-02

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators			Clima	Sys Resi	stance h	eater - N	SYCR55WU2		
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	9.74E+02	0*	0*	0*	0*	0*	9.74E+02	0*
Contribution to climate change-fossil	kg CO2 eq	9.52E+02	0*	0*	0*	0*	0*	9.52E+02	0*
Contribution to climate change-biogenic	kg CO2 eq	2.15E+01	0*	0*	0*	0*	0*	2.15E+01	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	4.17E-06	0*	0*	0*	0*	0*	4.17E-06	0*
Contribution to acidification	mol H+ eq	5.10E+00	0*	0*	0*	0*	0*	5.10E+00	0*
Contribution to eutrophication, freshwater	kg P eq	2.33E-03	0*	0*	0*	0*	0*	2.33E-03	0*
Contribution to eutrophication marine	kg N eq	5.96E-01	0*	0*	0*	0*	0*	5.96E-01	0*
Contribution to eutrophication, terrestrial	mol N eq	9.56E+00	0*	0*	0*	0*	0*	9.56E+00	0*
Contribution to photochemical ozone formation - human nealth	kg COVNM eq	1.89E+00	0*	0*	0*	0*	0*	1.89E+00	0*
Contribution to resource use, minerals and metals	kg Sb eq	3.16E-04	0*	0*	0*	0*	0*	3.16E-04	0*
Contribution to resource use, fossils	MJ	2.34E+04	0*	0*	0*	0*	0*	2.34E+04	0*
Contribution to water use	m3 eq	7.38E+01	0*	0*	0*	0*	0*	7.38E+01	0*

Inventory flows Indicators	ClimaSys Resistance heater - NSYCR55WU2								
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5.47E+03	0*	0*	0*	0*	0*	5.47E+03	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	5.47E+03	0*	0*	0*	0*	0*	5.47E+03	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	2.34E+04	0*	0*	0*	0*	0*	2.34E+04	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	2.34E+04	0*	0*	0*	0*	0*	2.34E+04	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	1.73E+00	0*	0*	0*	0*	0*	1.73E+00	0*
Contribution to hazardous waste disposed	kg	2.69E+01	0*	0*	0*	0*	0*	2.69E+01	0*
Contribution to non hazardous waste disposed	kg	1.47E+02	0*	0*	0*	0*	0*	1.47E+02	0*
Contribution to radioactive waste disposed	kg	3.46E-02	0*	0*	0*	0*	0*	3.46E-02	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	SCHN-00683-V02.01-EN	N-00683-V02.01-EN Drafting rules							
		Supplemented by	PSR-0005-ed3-2023 06 06						
Verifier accreditation N°	VH45	Information and reference documents	www.pep-ecopassport.org						
Date of issue	06-2025	Validity period	5 years						
Independent verification of the declaration and data, in compliance with ISO 14025 : 2006									
Internal	External X								

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact Head Office 35, rue Joseph Monier

CS 30323

F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439

Capital social 928 298 512 €

SCHN-00683-V02.01-EN

www.se.com

Published by Schneider Electric

©2024 - Schneider Electric - All rights reserved

06-2025