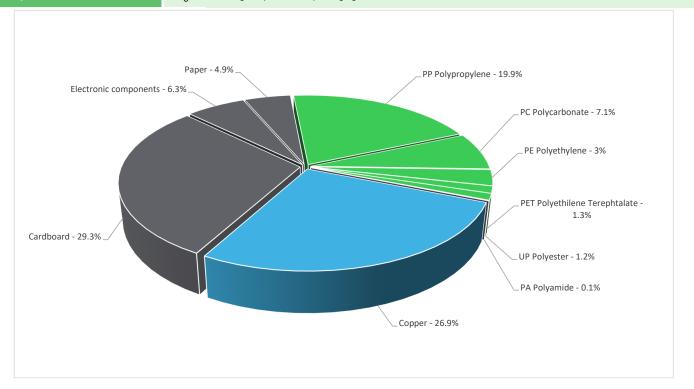
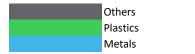

Product Environmental Profile

ComPacT NSX BSCM Modbus SL/ULP




General information

Reference product	ComPacT NSX BSCM Modbus SL/ULP - LV434220
Description of the product	BSCM Modbus SI/ULP for ComPacT NSX is used to acquire device status indications and control the communicating remote-control function and it serves as a converter between the analog outputs of the device indication contacts (O/F, SD, SDE) and the digital communicating functions. It is needed for communication of status indications, controls and measurements. The BSCM Modbus SL/ULP is installed inside the circuit breaker behind the front cover. It is connected to external Ethernet or Modbus interfaces (IFE/IFM) via the NSX cord terminal block and also can be connected to Modbus gateways via the Modbus SL Hub.
Description of the range	Single product
Functional unit	Ensure continuous communication and status acquisition for a low-voltage protection device in a Modbus SL/ULP communication system, for a circuit with an input voltage of 24V DC ±10% and a power consumption of 0.84W, installed inside a circuit breaker, operating 100% of the time over a reference service life of 10 years, while maintaining compliance with IEC 60947-2, IP02 ingress protection, and IK02 mechanical protection.
Specifications are:	Input voltage: 24V DC ±10% Power consumption: 0.96W Product Dimension: 34mm X 28mm X 30mm Product standard: IEC/EN 60947-2 while protecting against mechanical impacts (IK02) and the penetration of solid objects and liquids (IP02)
Accessories	ComPacT NSX BSCM Modbus SL/ULP is connected to ULP devices via Modbus SL Cord. ULP cord available in three lengths 0.35m (LV434221), 1m (LV434222) and 3m (LV434223)

Constituent materials

including the product, its packaging, additional elements and accessories 141 g

Substance assessment

40,5%

32,6%

26,9%

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

Additional environmental information

End Of Life

Recyclability potential:

40%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Environmental impacts

Reference service life time	10 years										
Product category	Other equipments - Active product										
Life cycle of the product	The manufacturing, the distribution, the installatio	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumtion	The electricity consumed during manufacturing pr generates a negligable consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption									
Installation elements	The product does not require special installation procedure and requires little to no energy to install. The disposal of the packaging materials are accounted for during the installation phase (including transport to disposal).										
Use scenario	The product is in active mode 100% of the time with a power use of 0.84W for 10 years										
Time representativeness	The collected data are representative of the year 2024										
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and Representative of the actual type of technologies used to make the product.										
Geographical representativeness	Rest of the World										
	[A1 - A3]	[A1 - A3] [A5] [B6] [C1 - C4]									
Energy model used	Electricity Mix; Low voltage; 2020; India, IN	Electricity Mix; Low voltage; 2020; Europe, EU-27 Electricity Mix; Low voltage; 2020; United States, US Electricity Mix; Low voltage; 2020; Asia Pacific, APAC Electricity Mix; Low voltage; 2020; Morocco, MA	Electricity Mix; Low voltage; 2020; Europe, EU-27 Electricity Mix; Low voltage; 2020; United States, US Electricity Mix; Low voltage; 2020; Asia Pacific, APAC Electricity Mix; Low voltage; 2020; Morocco, MA	Electricity Mix; Low voltage; 2020; Europe, EU-27 Electricity Mix; Low voltage; 2020; United States, US Electricity Mix; Low voltage; 2020; Asia Pacific, APAC Electricity Mix; Low voltage; 2020; Morocco, MA							

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	ComPacT NSX BSCM Modbus SL/ULP - LV434220									
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to climate change	kg CO2 eq	3,96E+01	1,81E+00	2,74E-02	0*	3,75E+01	2,30E-01	-6,20E-03		
Contribution to climate change-fossil	kg CO2 eq	3,92E+01	1,89E+00	2,74E-02	0*	3,71E+01	2,16E-01	6,32E-02		
Contribution to climate change-biogenic	kg CO2 eq	3,57E-01	0*	0*	0*	4,24E-01	1,41E-02	-6,94E-02		
Contribution to climate change-land use and land use change	kg CO2 eq	8,78E-06	8,65E-06	0*	0*	0*	1,26E-07	0,00E+00		
Contribution to ozone depletion	kg CFC-11 eq	3,98E-07	2,22E-07	4,21E-11	7,43E-11	1,71E-07	4,06E-09	3,57E-09		
Contribution to acidification	mol H+ eq	2,34E-01	1,86E-02	1,74E-04	2,52E-05	2,14E-01	9,92E-04	3,41E-04		
Contribution to eutrophication, freshwater	kg (PO4)³-eq	3,32E-04	3,95E-05	0*	0*	5,47E-05	2,38E-04	8,91E-07		
Contribution to eutrophication marine	kg N eq	2,65E-02	1,56E-03	8,15E-05	1,19E-05	2,47E-02	1,37E-04	9,62E-05		
Contribution to eutrophication, terrestrial	mol N eq	3,48E-01	1,68E-02	8,94E-04	1,21E-04	3,29E-01	1,79E-03	8,33E-04		
Contribution to photochemical ozone formation - human health	kg COVNM eq	8,70E-02	5,73E-03	2,25E-04	2,91E-05	8,06E-02	4,18E-04	2,25E-04		
Contribution to resource use, minerals and metals	kg Sb eq	5,05E-04	4,89E-04	0*	0*	7,61E-06	7,72E-06	-2,46E-07		
Contribution to resource use, fossils	MJ	8,08E+02	2,81E+01	3,83E-01	0*	7,78E+02	1,12E+00	8,76E-01		
Contribution to water use	m3 eq	3,69E+00	1,14E+00	0*	4,43E-03	2,34E+00	2,13E-01	2,51E-02		

Inventory flows Indicators	ComPacT NSX BSCM Modbus SL/ULP - LV434220								
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads	
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1,33E+02	1,03E+00	0*	0*	1,31E+02	1,86E-01	-1,69E-01	
Contribution to use of renewable primary energy resources used as raw material	MJ	0,00E+00	0*	0*	0*	0*	0*	8,56E-01	
Contribution to total use of renewable primary energy resources	MJ	1,33E+02	1,03E+00	0*	0*	1,31E+02	1,86E-01	6,87E-01	
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	8,06E+02	2,60E+01	3,83E-01	0*	7,78E+02	1,12E+00	8,76E-01	
Contribution to use of non renewable primary energy resources used as raw material	MJ	2,10E+00	2,10E+00	0*	0*	0*	0*	0,00E+00	
Contribution to total use of non-renewable primary energy resources	MJ	8,08E+02	2,81E+01	3,83E-01	0*	7,78E+02	1,12E+00	8,76E-01	
Contribution to use of secondary material	kg	5,46E-02	5,46E-02	0*	0*	0*	0*	0,00E+00	
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to net use of freshwater	m³	8,60E-02	2,64E-02	0*	1,03E-04	5,45E-02	4,95E-03	5,86E-04	
Contribution to hazardous waste disposed	kg	1,32E+01	1,22E+01	0*	0*	9,79E-01	8,91E-03	-1,37E-02	
Contribution to non hazardous waste disposed	kg	6,53E+00	4,53E-01	9,64E-04	4,84E-02	5,98E+00	5,05E-02	3,15E-02	
Contribution to radioactive waste disposed	kg	1,26E-03	2,37E-04	6,86E-07	0*	1,02E-03	1,79E-06	1,51E-05	
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to materials for recycling	kg	4,27E-02	5,35E-03	0*	0*	0*	3,73E-02	0,00E+00	
Contribution to materials for energy recovery	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to exported energy	MJ	4,26E-04	5,54E-05	0*	0*	0*	3,71E-04	0,00E+00	

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product	kg of C	0,00E+00
Contribution to biogenic carbon content of the associated packaging	kg of C	1,42E-02

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		ComPac	T NSX B	SCM Mo	dbus SL	/ULP - LV434220)		
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	3,75E+01	0*	0*	0*	0*	0*	3,75E+01	0*
Contribution to climate change-fossil	kg CO2 eq	3,71E+01	0*	0*	0*	0*	0*	3,71E+01	0*
Contribution to climate change-biogenic	kg CO2 eq	4,24E-01	0*	0*	0*	0*	0*	4,24E-01	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	1,71E-07	0*	0*	0*	0*	0*	1,71E-07	0*
Contribution to acidification	mol H+ eq	2,14E-01	0*	0*	0*	0*	0*	2,14E-01	0*
Contribution to eutrophication, freshwater	kg (PO4)³⁻eq	5,47E-05	0*	0*	0*	0*	0*	5,47E-05	0*
Contribution to eutrophication marine	kg N eq	2,47E-02	0*	0*	0*	0*	0*	2,47E-02	0*
Contribution to eutrophication, terrestrial	mol N eq	3,29E-01	0*	0*	0*	0*	0*	3,29E-01	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	8,06E-02	0*	0*	0*	0*	0*	8,06E-02	0*
Contribution to resource use, minerals and metals	kg Sb eq	7,61E-06	0*	0*	0*	0*	0*	7,61E-06	0*
Contribution to resource use, fossils	MJ	7,78E+02	0*	0*	0*	0*	0*	7,78E+02	0*
Contribution to water use	m3 eq	2,34E+00	0*	0*	0*	0*	0*	2,34E+00	0*

Inventory flows Indicators	ComPac	T NSX B	SCM Mo	dbus SL	ULP - LV434220				
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1,31E+02	0*	0*	0*	0*	0*	1,31E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy esources	MJ	1,31E+02	0*	0*	0*	0*	0*	1,31E+02	0*
ntribution to use of non renewable primary energy excluding renewable primary energy used as raw material	MJ	7,78E+02	0*	0*	0*	0*	0*	7,78E+02	0*
ontribution to use of non renewable primary energy sources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to total use of non-renewable primary energy burces	MJ	7,78E+02	0*	0*	0*	0*	0*	7,78E+02	0*
ontribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
tribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to net use of freshwater	m³	5,45E-02	0*	0*	0*	0*	0*	5,45E-02	0*
tribution to hazardous waste disposed	kg	9,79E-01	0*	0*	0*	0*	0*	9,79E-01	0*
ntribution to non hazardous waste disposed	kg	5,98E+00	0*	0*	0*	0*	0*	5,98E+00	0*
ntribution to radioactive waste disposed	kg	1,02E-03	0*	0*	0*	0*	0*	1,02E-03	0*
ntribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*
	_	_							

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.2, database version 2025-02 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	SCHN-01191-V01.02-EN	Drafting rules	PCR-4-ed4-EN-2021 09 06						
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08						
Verifier accreditation N°	VH08	Information and reference documents	www.pep-ecopassport.org						
Date of issue	05-2025	Validity period	5 years						
Independent verification of the declaration and data, in compliance with ISO 14025 : 2006									
Internal	External X								

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact 35, rue Joseph Monier CS 30323

F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

www.se.com

SCHN-01191-V01.02-EN

Published by Schneider Electric

 $\hbox{@2024 - Schneider Electric} - \hbox{All rights reserved}$

05-2025