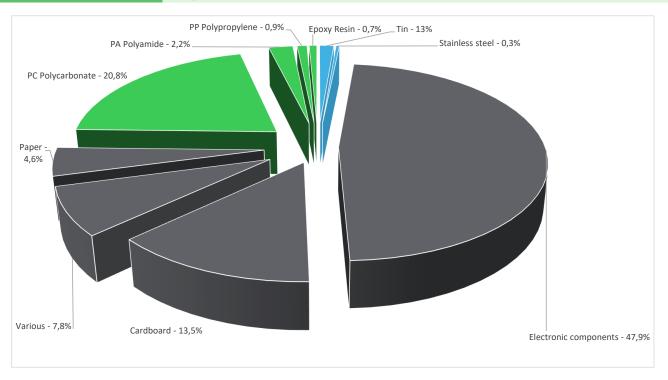
Product Environmental Profile

Regulated Power Supply, 100-240V AC, 24V 2.5 A, single phase, Modular

Modicon ABLM Modular power supply

General information


Reference product	Regulated Power Supply, 100-240V AC, 24V 2.5 A, single phase, Modular - ABLM1A24025
Description of the product	Modicon ABLM Modular power supplies conform to the Overvoltage Category III and therefore can be directly connected to central distribution boards. In the event of an overload the power supply protection interrupts power; when the source of the overload has been corrected, the power supply reverts to its nominal state (automatic reset).
Description of the range	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. The Modicon electronic switch mode power supply offer is designed to provide the DC voltage necessary for the PLC and automation system equipment control circuits. Modicon ABLM Modular power supplies are fully electronic and their output voltage is regulated. The ABLM Modular type meets the needs of simple automation systems with power ratings from 10 to 60 W and an output voltage of 5, 12 or 24 Vdc.
Functional unit	To supply control circuits in industrial and building automation providing up to 60W of power and consuming up to 6,5 W at 100% use rate for 10 years.
Specifications are:	Nominal input voltage: 100 to 240 V AC single-phase 100 to 240 V AC phase to phase Power rating in W: 60 W Output voltage: 24 V DC Output current power supply module: 2.5 A Input voltage limits: 90 to 264 V AC

Constituent materials

Reference product mass

221,5 g including the product, its packaging, additional elements and accessories

 Plastics
 24,6%

 Metals
 1,6%

 Others
 73,8%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(1) Additional environmental information

End Of Life

Recyclability potential:

15%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Tenvironmental impacts

Reference service life time	10 years											
Product category	Other equipments - Active product											
Life cycle of the product	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study.											
Electricity consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption.											
Installation elements	Modicon ABLM Modular Regulated power supply	does not require any installation	n operations.									
Use scenario	The dissipated power depends on the conditions under which the product is implemented and used. This dissipated power is 6,5 W for the ABLM1A24025 product.											
Time representativeness	The collected data are representative of the year 2025.											
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are similar and representative of the actual type of technologies used to make the product.											
	Final assembly site Use phase End-of-life											
Geographical representativeness	Cavite (Philippines)	China China Cavite (Philippines) Europe Europe USA USA							Europe		Europe	
	[A1 - A3]	[A5]	[B6]	[C1 - C4]								
Energy model used	Electricity Mix; Low voltage; 2020; China, CN No energy used Electricity Mix; Low voltage; Global, European ar 2020; China, CN French datasets are used											

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators	Reg	julated Power Suj	oply, 100-240V A	.C, 24V 2.5 A, sin	igle phase, Modul	ar - ABLM1A240	25	
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	2,35E+02	4,04E+00	3,88E-02	0*	2,30E+02	6,48E-01	4,40E-02
Contribution to climate change-fossil	kg CO2 eq	2,30E+02	4,02E+00	3,88E-02	0*	2,25E+02	5,86E-01	-3,64E-03
Contribution to climate change-biogenic	kg CO2 eq	5,17E+00	2,81E-02	0*	0*	5,08E+00	6,23E-02	4,77E-02
Contribution to climate change-land use and land use change	kg CO2 eq	5,09E-08	5,05E-08	0*	0*	0*	3,69E-10	0,00E+00
Contribution to ozone depletion	kg CFC-11 eq	1,83E-06	8,19E-07	2,67E-08	0*	9,86E-07	3,11E-09	-2,35E-09
Contribution to acidification	mol H+ eq	1,23E+00	2,33E-02	1,94E-04	0*	1,20E+00	5,99E-04	4,13E-05
Contribution to eutrophication, freshwater	kg P eq	5,68E-04	1,40E-05	0*	0*	5,51E-04	3,08E-06	-6,64E-07
Contribution to eutrophication, marine	kg N eq	1,44E-01	3,01E-03	9,02E-05	0*	1,41E-01	2,64E-04	-2,52E-05
Contribution to eutrophication, terrestrial	mol N eq	2,30E+00	3,23E-02	9,81E-04	0*	2,26E+00	2,56E-03	-9,55E-05
Contribution to photochemical ozone formation - human health	kg COVNM eq	4,58E-01	9,99E-03	2,97E-04	0*	4,47E-01	6,28E-04	-2,58E-05
Contribution to resource use, minerals and metals	kg Sb eq	4,78E-04	4,04E-04	0*	0*	7,46E-05	0*	4,73E-05
Contribution to resource use, fossils	MJ	5,57E+03	5,29E+01	0*	0*	5,52E+03	1,24E+00	9,44E-02
Contribution to water use	m3 eq	1,95E+01	2,04E+00	0*	0*	1,74E+01	4,01E-02	-1,19E-02

Inventory flows Indicators	Regulated Power Supply, 100-240V AC, 24V 2.5 A, single phase, Modular - ABLM1A24025								
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads	
Contribution to renewable primary energy used as energy	MJ	1,30E+03	4,10E+00	0*	0*	1,29E+03	1,78E-01	1,40E-01	
Contribution to renewable primary energy used as raw materia	MJ	1,86E-01	1,86E-01	0*	0*	0*	0*	-6,07E-01	
Contribution to total renewable primary energy	MJ	1,30E+03	4,29E+00	0*	0*	1,29E+03	1,78E-01	-4,67E-01	
Contribution to non renewable primary energy used as energy	MJ	5,57E+03	5,16E+01	0*	0*	5,52E+03	1,24E+00	9,44E-02	
Contribution to non renewable primary energy used as raw material	MJ	1,30E+00	1,30E+00	0*	0*	0*	0*	0,00E+00	
Contribution to total non renewable primary energy	MJ	5,57E+03	5,29E+01	0*	0*	5,52E+03	1,24E+00	9,44E-02	
Contribution to use of secondary material	kg	1,02E-01	1,02E-01	0*	0*	0*	0*	0,00E+00	
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to net use of fresh water	m³	4,56E-01	4,73E-02	0*	0*	4,08E-01	1,09E-03	-2,77E-04	
Contribution to hazardous waste disposed	kg	8,93E+00	2,46E+00	0*	0*	6,35E+00	1,14E-01	-3,76E-02	
Contribution to non hazardous waste disposed	kg	3,61E+01	1,36E+00	0*	0*	3,47E+01	9,47E-02	-2,63E-02	
Contribution to radioactive waste disposed	kg	8,90E-03	7,16E-04	6,23E-06	0*	8,18E-03	5,85E-06	-1,21E-05	
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to materials for recycling	kg	3,60E-02	1,60E-03	0*	0*	0*	3,44E-02	0,00E+00	
Contribution to materials for energy recovery	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00	
Contribution to exported energy	MJ	6,29E-03	5,77E-03	0*	0*	0*	5,26E-04	0,00E+00	
* represents less than 0.040/ of the total life avale of the refere									

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0,00E+00 Contribution to biogenic carbon content of the associated packaging kg of C 0,00E+00

* The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators		Regi	ulated Po	ower Supply, 10	00-240V A	C, 24V 2.	5 A, sing	jle phase, Modu	lar - ABLM1A24025
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	2,30E+02	0*	0*	0*	0*	0*	2,30E+02	0*
Contribution to climate change-fossil	kg CO2 eq	2,25E+02	0*	0*	0*	0*	0*	2,25E+02	0*
Contribution to climate change-biogenic	kg CO2 eq	5,08E+00	0*	0*	0*	0*	0*	5,08E+00	0*
Contribution to climate change-land use and land use change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	9,86E-07	0*	0*	0*	0*	0*	9,86E-07	0*
Contribution to acidification	mol H+ eq	1,20E+00	0*	0*	0*	0*	0*	1,20E+00	0*
Contribution to eutrophication, freshwater	kg P eq	5,51E-04	0*	0*	0*	0*	0*	5,51E-04	0*
Contribution to eutrophication marine	kg N eq	1,41E-01	0*	0*	0*	0*	0*	1,41E-01	0*
Contribution to eutrophication, terrestrial	mol N eq	2,26E+00	0*	0*	0*	0*	0*	2,26E+00	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	4,47E-01	0*	0*	0*	0*	0*	4,47E-01	0*
Contribution to resource use, minerals and metals	kg Sb eq	7,46E-05	0*	0*	0*	0*	0*	7,46E-05	0*
Contribution to resource use, fossils	MJ	5,52E+03	0*	0*	0*	0*	0*	5,52E+03	0*
Contribution to water use	m3 eq	1,74E+01	0*	0*	0*	0*	0*	1,74E+01	0*

Inventory flows Indicators		Regu	lated Po	ower Supply, 10	0-240V A	C, 24V 2.	5 A, sing	gle phase, Modu	lar - ABLM1A24025
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1,29E+03	0*	0*	0*	0*	0*	1,29E+03	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	1,29E+03	0*	0*	0*	0*	0*	1,29E+03	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	5,52E+03	0*	0*	0*	0*	0*	5,52E+03	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	5,52E+03	0*	0*	0*	0*	0*	5,52E+03	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	4,08E-01	0*	0*	0*	0*	0*	4,08E-01	0*
Contribution to hazardous waste disposed	kg	6,35E+00	0*	0*	0*	0*	0*	6,35E+00	0*
Contribution to non hazardous waste disposed	kg	3,47E+01	0*	0*	0*	0*	0*	3,47E+01	0*
Contribution to radioactive waste disposed	kg	8,18E-03	0*	0*	0*	0*	0*	8,18E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.5-6, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2004005_V2	Drafting rules	PEP-PCR-ed4-2021 09 06					
		Supplemented by	PSR-0005-ed3.1-EN-2023 06 06					
Date of issue	12025-07	Information and reference documents	www.pep-ecopassport.org					
		Validity period	5 years					
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016								
Internal X	External							

The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)

PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022

The components of the present PEP may not be compared with components from any other program.

Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"

Schneider Electric Industries SAS

Country Customer Care Center http://www.se.com/contact

Head Office

35, rue Joseph Monier

CS 30323

F- 92500 Rueil Malmaison Cedex

RCS Nanterre 954 503 439

Capital social 928 298 512 €

2025-07