


# PRODUCT ENVIRONMENTAL PROFILE

# **HEAT-SHRINK TERMINATION 24kV - 071870-000**



| Registration number: TECO-00014-V01.01-EN                                           |                                                     | Drafting rules: PCR-ed4-EN-2021 09 06 Supplemented by: PSR-0001-ed4-EN-2022 11 16 |       |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|-------|--|
| Verifier accreditation number: VH26                                                 |                                                     | Information and reference documents: www.pep-ecopassport.org                      |       |  |
| Date of issue: 08-2                                                                 | 2025                                                | Validity period: 5 years                                                          |       |  |
| Independent verification of the declaration and data in compliance with ISO 14025:2 |                                                     |                                                                                   | 006   |  |
| Internal: □                                                                         | External:                                           |                                                                                   |       |  |
| The PCR review w                                                                    | vas conducted by a panel of experts ch              | naired by Julie ORGELET -                                                         |       |  |
| PEPs are compliar of the present PEP                                                | eco<br>PASS                                         |                                                                                   |       |  |
| Document complied Type III environm                                                 | es with ISO 14025:2006 "Environmental declarations" | ntal labels and declarations.                                                     | PORT® |  |





# **GENERAL INFORMATION**

## PEP ECOPASSPORT® OWNER

Tyco Electronics Polska Sp. Z o.o. Plant, Kablowa 1, 70-895 Szczecin, Poland

### REFERENCE PRODUCT

OXSU-F5131-NO02: 071870-000

### **DESCRIPTION OF THE PRODUCT**

The OXSU/IXSU Heat-Shrink Termination is a medium-voltage cable accessory designed for polymeric cables up to 24 kV in both indoor and outdoor applications. It features red co-extruded, non-tracking HVOT tubing that ensures superior insulation, environmental protection, and long-term reliability. Its compact design with conductive breakout and core extension tubes enables easy installation, even when cable cores cross. Supplied as a complete kit, the OXSU/IXSU supports a wide range of installation needs and complies with CENELEC HD 629.1 S2:2006, IEC 60502-4, and IEEE 48 standards, delivering durable performance for utility, industrial, and infrastructure networks.

### **FUNCTIONAL UNIT**

To connect together the power transmission cables, or connect them to equipment, for one unit and its packaging, under operating conditions identical to those of the cable, namely: 1 A during 30 years, with a use rate of 100%, according to the standards in force.

# OTHER PRODUCTS COVERED

OXSU-F6141-ML-6-17: CF6247-008

• IXSU-F5131-NO02: F53230-000

# MARKET APPLICABILITY

Global

# **COMPANY REFERENCE CONTACT**

Sustainability Analyst & LCA Specialist: Waleed Qatrameez — <u>waleed.qatrameez@te.com</u> Sustainability Manager: Łukasz Sadowski — <u>lukasz.sadowski@te.com</u>

## PLANTS LOCATION

Environmental impacts have been calculated for the TE Connectivity plants located in Poland, France and Germany:

- Tyco Electronics Polska, Sp. Z o.o. Plant Szczecin, Kablowa 1, 70-895 Szczecin, Poland
- Tyco Electronics Simel SAS, 1 Rue Paul Martin, 21220 Gevrey-Chambertin, France
- TE Connectivity Tyco Electronics Raychem GmbH, Finsinger Feld 1 · 85521 Ottobrunn, Germany

### **SOFTWARE USED**

iPoint Umberto 11 (version 11.15.2.0)





# **DATABASE**

Ecoinvent 3.11 and Industry data

# REFERENCE YEAR

The reference year used for primary data collection and processing is 2024





# 2 DESCRIPTION OF THE COMPANY

TE is an international group which has its core business in producing highly engineered connectivity, insulating and sensing products covering a large variety of purposes, from global communication infrastructures, utility networks, factories, smart homes and transport sector. For more than 75 years, TE has partnered with customers to produce highly engineered connectivity and sensing products. With approximately 80,000 employees in 107 manufacturing sites around the world, including more than 7,500 engineers, working alongside customers in approximately 140 countries, TE ensures that every connection counts. TE Connectivity consists of the following segments:

- THE TRANSPORTATION segment consists of: Automotive, Industrial & Commercial Transportation, Sensors, Application Tooling BU's.
- THE INDUSTRIAL segment consists of: Industrial, Aerospace, Defense & Marine, Medical, Energy BU's.
- THE COMMUNICATIONS segment consists of: Appliances, Data & Devices BU's

## ENVIRONMENTAL POLICY AND ACTIONS

TE is committed in a sustainable management of its operations. This includes our ambitions to reduce our GHG emissions by more than 35 percent by 2030 (Scope 1 and Scope 2 emissions on a normalized basis), decreasing our waste disposed and helping 100 percent of our facilities in water-stressed regions meet water reduction targets.

All plants in Szczecin, Gevrey-Chambertin and Ottobrunn owns the following certifications:

- ISO 14001
- ISO 14064 for FY21 period (October 2020 September 2021)

# Building a Safer, Sustainable, Productive & Connected Future



# Contributing to the UNSDGs Our One Connected World strategy is aligned with the United Nations Sustainable Development Goals (SDGs), helping us identify where we can improve business practices to support progress against global efforts. For more information, please view our UNSDG Report. 4 Support Report. 4 Support Report. 5 SUBJECT REPORTS. 6 ELIA MITTER CONTROLL STRAINED CONTROLL





TE Connectivity Szczecin, Gevrey-Chambertin and Ottobrunn plants:



**SZCZECIN** 

**GEVREY-CHAMBERTIN** 



**OTTOBRUNN** 

# 3 PRODUCT SPECIFICATIONS

The OXSU/IXSU Heat-Shrink Termination is a pre-engineered medium-voltage system for polymeric cables up to 24 kV, designed for reliable performance in both indoor and outdoor applications. Its red co-extruded, non-tracking HVOT tubing provides superior insulation and environmental protection, while conductive breakout and core extension tubes ensure consistent stress control and easy installation, even with crossing cores. Supplied as complete kits, the OXSU/IXSU accommodates armored and unarmored cables, delivering long-term mechanical protection, sealing, and electrical integrity. Fully tested to CENELEC HD 629.1 S2:2006, IEC 60502-4, and IEEE 48, it offers proven durability and dependable service in utility, industrial, and infrastructure networks.

Technical specifications of the product are reported in the following table:

| Voltage Class                            | ≤ 24     | kV     |
|------------------------------------------|----------|--------|
| Termination length                       | 440      | mm     |
| Compatible Conductor Cross-Section Range | 70 - 240 | $mm^2$ |





| Compatible Insulation Diameter Range | 21.9 – 32.6 | mm |
|--------------------------------------|-------------|----|
| Sheath Outside Diameter              | 95          | mm |

Total weight of product, packaging and additional elements, as well as the list of **constituent materials**, are provided in the following tables:

| Total weight | Product     | Packaging | Additional elements | Unit |
|--------------|-------------|-----------|---------------------|------|
| 2.225        | 1.955       | 0.270     | 0.0                 | Kg   |
|              | Constituent | Plastic   | 35.31%              |      |
|              | materials   | Metals    | 21.80%              |      |
|              |             | Other     | 42.89%              |      |

# 4 MANUFACTURING PROCESS

The manufacturing process of the OXSU/IXSU Heat-Shrink Termination involves coordinated production across multiple TE Connectivity facilities. In Gevrey, France, high-grade aluminium lugs are cast, machined, and surface-treated for corrosion resistance before shipment to Szczecin, Poland. In Ottobrunn, Germany, the insulating tubes and heat-shrinkable skirts are produced from thermoplastic co-polymer and polyethylene through advanced extrusion and moulding, then quality-checked and shipped to Szczecin. At the Szczecin plant, the lugs are greased and assembled with inserts and bolts and combined with the insulating and heat-shrink components in a manual assembly process. Each termination undergoes strict quality inspection before being packed with all required accessories, labelled, and palletized for delivery.

# 5 RESULTS

Environmental impacts are calculated considering a cradle-to-grave system boundary, including the following life cycle stages:

| Manufactu | ıring stage | Distribution stage | Installation<br>stage | Use & maintenance stage | End-of-life<br>stage |
|-----------|-------------|--------------------|-----------------------|-------------------------|----------------------|
| Upstream  | Core        | Downstream         |                       |                         |                      |





**PRODUCT CATEGORY:** Heat-Shrink Termination for Medium Voltage Networks

**INSTALLATION ELEMENTS:** Steel elements-installation kit provided together with the product **USE SCENARIO:** The product has no active function and electricity is negligible, as confirmed by the engineering department. However, a minimal consumption scenario is included for completeness and consistency with standardized assumptions, in line with PSR requirements.

GEOGRAPHICAL REPRESENTATIVENESS: European market with focus on Norwegian market

**TEMPORAL REPRESENTATIVENESS:** Publication of this PEP is not later than 2 years beyond time validity of Ecoinvent datasets chosen

**TECHNOLOGICAL REPRESENTATIVENESS**: Datasets chosen for modelling product's manufacturing process are representative of the actual production process

**ENERGY DATASETS:** Country-specific energy datasets for manufacturing processes are considered (Polish, French and German)

Results are reported with the same number of significant figures for each impact indicator. Sums may not coincide with totals due to rounding.

### **ENVIRONMENTAL IMPACTS**

| 21111111111     |                       |               |              |              |          |                |           |
|-----------------|-----------------------|---------------|--------------|--------------|----------|----------------|-----------|
| Impact category | Unit                  | Manufacturing | Distribution | Installation | Use      | End of<br>life | Total     |
| GWP, t          | kg CO <sub>2</sub> eq | 9.64E+00      | 3.55E-01     | 1.28E-01     | 3.67E-04 | 1.40E+00       | 1.15E+01  |
| GWP, f          | kg CO <sub>2</sub> eq | 1.13E+01      | 3.55E-01     | 5.00E-02     | 3.51E-04 | 1.39E+00       | 1.31E+01  |
| GWP, b          | kg CO <sub>2</sub> eq | -1.80E+00     | 2.24E-04     | 7.80E-02     | 1.62E-05 | 3.42E-03       | -1.72E+00 |
| GWP, luluc      | kg CO <sub>2</sub> eq | 1.55E-01      | 1.19E-04     | 4.83E-05     | 1.93E-07 | 1.32E-05       | 1.55E-01  |
| AP              | kg H+ eq              | 7.01E-02      | 1.23E-03     | 1.02E-04     | 1.21E-06 | 4.31E-04       | 7.18E-02  |
| EPf             | kg P eq               | 6.50E-03      | 2.41E-05     | 9.57E-06     | 9.42E-08 | 7.10E-06       | 6.54E-03  |
| EPm             | kg N eq               | 1.14E-02      | 4.06E-04     | 1.63E-04     | 3.26E-07 | 2.34E-04       | 1.22E-02  |
| EPt             | mol N eq              | 1.08E-01      | 4.43E-03     | 2.53E-04     | 3.52E-06 | 2.09E-03       | 1.15E-01  |
| РОСР            | kg<br>NMVOC<br>eq     | 4.93E-02      | 1.79E-03     | 1.04E-04     | 1.11E-06 | 5.77E-04       | 5.17E-02  |
| ODP             | kg CFC-<br>11 eq      | 5.01E-06      | 7.71E-09     | 3.45E-10     | 2.30E-12 | 1.03E-09       | 5.02E-06  |
| ADPe            | kg Sb eq              | 2.44E-04      | 1.21E-06     | 2.15E-07     | 2.54E-09 | 1.59E-07       | 2.45E-04  |
|                 |                       |               |              |              |          |                |           |





| ADPf | MJ            | 2.25E+02 | 5.03E+00 | 3.33E-01 | 2.68E-03 | 6.47E-01 | 2.31E+02 |
|------|---------------|----------|----------|----------|----------|----------|----------|
| WDP  | m3<br>depriv. | 1.32E+01 | 2.62E-02 | 1.08E-02 | 4.42E-02 | 9.43E-02 | 1.34E+01 |

GWP, t: Global Warming Potential total; GWP, f: Global Warming Potential fossil; GWP, b: Global Warming Potential biogenic; GWP, luluc: Global Warming Potential land use and land use change; GWP, GHG: Global Warming Potential irreversible; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP, f: Eutrophication potential-freshwater; EP, m: Eutrophication potential-marine; EP, t: Eutrophication potential-terrestrial; POCP: Formation potential of tropospheric ozone; ADP, e: Abiotic Depletion for non-fossil resources potential, WDP: Water deprivation potential

# **USE OF RESOURCES**

| <b>Impact</b> category | Unit  | Manufacturing | Distribution | Installation | Use      | End of<br>life | Total    |
|------------------------|-------|---------------|--------------|--------------|----------|----------------|----------|
| PERE                   | MJ    | 7.77E+01      | 8.14E-02     | 6.83E-02     | 1.45E-01 | 2.08E-02       | 7.80E+01 |
| PERM                   | MJ    | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00       | 0.00E+00 |
| PERT                   | MJ    | 7.77E+01      | 8.14E-02     | 6.83E-02     | 1.45E-01 | 2.08E-02       | 7.80E+01 |
| PENRE                  | MJ    | 2.25E+02      | 5.03E+00     | 3.33E-01     | 2.68E-03 | 6.47E-01       | 2.31E+02 |
| PENRM                  | MJ    | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00       | 0.00E+00 |
| PENRT                  | MJ    | 2.25E+02      | 5.03E+00     | 3.33E-01     | 2.68E-03 | 6.47E-01       | 2.31E+02 |
| SM                     | kg    | 3.99E-01      | 2.25E-03     | 2.54E-04     | 1.03E-05 | 2.30E-03       | 4.03E-01 |
| RSF                    | MJ    | 3.60E-01      | 2.93E-05     | 1.86E-06     | 2.45E-08 | 1.28E-05       | 3.60E-01 |
| NRSF                   | MJ    | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00       | 0.00E+00 |
| FW                     | $m^3$ | 2.95E-01      | 6.05E-04     | -2.37E-04    | 1.03E-03 | 1.67E-03       | 2.98E-01 |

PERE: Renewable Primary Energy excluding Primary Energy used as raw material; PERM: Renewable Primary Energy used as raw material; PERT: Total use of Renewable Primary Energy; PENRE: Non-renewable Primary Energy used as raw material; PENRM: Non-renewable Primary Energy used as raw material; PENRT: Total use of Non-renewable Primary Energy; SM: Use of secondary raw materials; RSF: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels; FW: Net use of fresh water.

# **OUTPUT FLOWS AND WASTE PRODUCTION**

| Impact category | Unit | Manufacturing | Distribution | Installation | Use      | End of life | Total    |
|-----------------|------|---------------|--------------|--------------|----------|-------------|----------|
| HWD             | kg   | 1.70E+00      | 7.20E-03     | 1.59E-03     | 4.10E-05 | 1.81E-02    | 1.72E+00 |
| NHWD            | kg   | 5.92E+01      | 1.54E-01     | 6.31E-01     | 1.39E-03 | 1.70E+00    | 6.16E+01 |
| RWD             | kg   | 6.12E-04      | 1.47E-06     | 1.53E-06     | 4.95E-09 | 3.23E-07    | 6.15E-04 |
| CRU             | kg   | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00    | 0.00E+00 |





| MFR | kg | 1.98E-01 | 1.01E-04 | 3.36E-01 | 7.69E-06 | 1.19E-01 | 6.53E-01 |
|-----|----|----------|----------|----------|----------|----------|----------|
| MER | kg | 2.34E-05 | 3.17E-07 | 2.97E-07 | 4.75E-10 | 3.22E-08 | 2.41E-05 |
| EE  | MJ | 1.50E-01 | 2.18E-03 | 1.48E-03 | 5.18E-06 | 2.86E-01 | 4.40E-01 |

HWV: Hazardous waste disposed; NHWD: Non-hazardous waste disposed; RWD: Radioactive waste disposed; CRU: Components for re-use; MFR: Materials for recycling; MER: Materials for energy recovery; EEE: Exported energy – electricity; EET: Exported energy – thermal energy.

### INVENTORY FLOW INDICATOR – OTHER INDICATORS

| Impact category                            | Unit | Manufacturing | Distribution | Installation | Use      | End of life | Total    |
|--------------------------------------------|------|---------------|--------------|--------------|----------|-------------|----------|
| Biogenic<br>carbon content<br>in product   | Kg C | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00    | 0.00E+00 |
| Biogenic<br>carbon content<br>in packaging | Kg C | 1.72E-01      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00    | 1.72E-01 |

# 6 CALCULATION RULES

According to reference PCR the main activities are listed and divided in the following stages:



This declaration is a cradle to grave EPD type, based on the application of Life Cycle Assessment (LCA) methodology to the whole life-cycle system. In the whole LCA model, infrastructures and production equipment are not considered.

Customized LCA questionnaires were used to gather primary data about all aspects of the production system (for example manufacturing processes consumptions and efficiencies, waste management), to provide a complete picture of the environmental burden of the system from raw materials supply to final products delivery.

Allocation occurs anytime a system is producing more than a single output. In this case it is necessary to choose a technique to proper split the environmental burdens among the output flows; international standards ISO 14040 and 14044 provide guidelines about how to deal with this issue, that have been implemented in this project as well. Physical allocation - based on total production amount - was adopted to consistently assign plant data (electricity for services, gas and fuel consumption, water supply, waste treatment) and electricity production process data to the product under study.





Below the sub-phases considered in the analysis are reported, per each life cycle stage:



### MANUFACTURING STAGE

- Elbow connector raw materials production
- Kit parts production
- Raw materials and kit components transportation to Gevrey plant
- Manufacturing processes from raw materials to semi-finished products at Gevrey plant
- Raw materials and kit components transportation to Ottobrunn plant
- Manufacturing processes from raw materials to semi-finished products at Ottobrunn plant
- Kit parts transportation to Szczecin plant
- Semi-finished product transportation from Gevrey and Ottobrunn to Szczecin plant
- Product kitting at Szczecin plant
- Szczecin, Gevrey and Ottobrunn plants services consumption
- Production of packaging materials for product delivery to customers
- Process waste transportation to treatment sites from Szczecin, Gevrey and Ottobrunn plants
- Treatment of process waste for Szczecin, Gevrey and Ottobrunn plants, according to indications provided by TE



### DISTRIBUTION STAGE

• Product delivery to final customer, considering a specific scenario of transportation to Oslo (Norway) by truck and ferry



# INSTALLATION STAGE 1

- Transportation of waste product packaging to treatment site (50 km assumption)
- Treatment of waste product packaging, according to Norwegian scenarios



### **USE STAGE**

- A minimal electricity consumption of 0.038 kWh over the reference service life was modeled in accordance with PSR requirements, ensuring completeness and consistency with standardized assumptions
- The background electricity supply uses Ecoinvent v3.11, dataset: Electricity, high voltage {NO} | electricity, high voltage, production mix | Cut-off, U

<sup>&</sup>lt;sup>1</sup> The product on-site installation procedures were not considered in the LCA model, requiring no relevant inputs in terms of materials and energy.

<sup>&</sup>lt;sup>2</sup> According to 2021 WEEE end-of-life scenarios, provided by Eurostat https://ec.europa.eu/eurostat/statistics\_-

\_explained/index.php?title=Waste\_statistics\_-\_electrical\_and\_electronic\_equipment







### **END-OF-LIFE STAGE**

- Transportation of decommissioned product to treatment site (50 km assumption)
- Treatment of decommissioned product<sup>2</sup>

# 7 EXTRAPOLATION FACTORS

The environmental impacts for the other two products covered by this PEP, which belong to the same product family as the reference product, can be derived from the reference product's results by applying proportionality rules based on the parameters listed in the following tables—one for each relevant life cycle stage. Since the installation phase involves only packaging waste treatment and is identical for all products, it does not vary. Similarly, the use phase does not vary, as energy consumption is negligible and consistent with the applicable Product Specific Rules (PSR) across all products. Therefore, extrapolation rules are provided only for the manufacturing, distribution, and end-of-life stages.

|                 | MANUFACTURING STAGE |            |            |  |  |  |  |  |  |
|-----------------|---------------------|------------|------------|--|--|--|--|--|--|
| Impact category | 071870-000          | CF6247-008 | F53230-000 |  |  |  |  |  |  |
| GWP, t          | 1.00                | 1.61       | 0.55       |  |  |  |  |  |  |
| GWP, f          | 1.00                | 1.45       | 0.58       |  |  |  |  |  |  |
| GWP, b          | 1.00                | 0.62       | 0.96       |  |  |  |  |  |  |
| GWP, luluc      | 1.00                | 1.38       | 0.69       |  |  |  |  |  |  |
| AP              | 1.00                | 1.32       | 0.70       |  |  |  |  |  |  |
| EPf             | 1.00                | 1.34       | 0.68       |  |  |  |  |  |  |
| EPm             | 1.00                | 1.32       | 0.65       |  |  |  |  |  |  |
| EPt             | 1.00                | 1.32       | 0.65       |  |  |  |  |  |  |
| POCP            | 1.00                | 1.47       | 0.55       |  |  |  |  |  |  |
| ODP             | 1.00                | 3.25       | 0.30       |  |  |  |  |  |  |
| ADPe            | 1.00                | 1.07       | 0.90       |  |  |  |  |  |  |
| ADPf            | 1.00                | 1.53       | 0.52       |  |  |  |  |  |  |
| WDP             | 1.00                | 1.40       | 0.69       |  |  |  |  |  |  |
| PERE            | 1.00                | 1.06       | 0.77       |  |  |  |  |  |  |
| PERM            | 0.00                | 0.00       | 0.00       |  |  |  |  |  |  |





| PERT  | 1.00 | 1.06 | 0.77 |
|-------|------|------|------|
| PENRE | 1.00 | 1.53 | 0.52 |
| PENRM | 0.00 | 0.00 | 0.00 |
| PENRT | 1.00 | 1.53 | 0.52 |
| SM    | 1.00 | 1.29 | 0.42 |
| RSF   | 1.00 | 1.09 | 0.29 |
| NRSF  | 0.00 | 0.00 | 0.00 |
| FW    | 1.00 | 1.39 | 0.69 |
| HWD   | 1.00 | 1.44 | 0.67 |
| NHWD  | 1.00 | 1.49 | 0.51 |
| RWD   | 1.00 | 1.44 | 0.65 |
| CRU   | 0.00 | 0.00 | 0.00 |
| MFR   | 1.00 | 1.51 | 0.60 |
| MER   | 1.00 | 0.49 | 1.90 |
| EE    | 1.00 | 1.19 | 0.68 |

| DISTRIBUTION | STAGE  |
|--------------|--------|
| DISTRIBUTION | DITIGE |

| Impact category | 071870-000 | CF6247-008 | F53230-000 |
|-----------------|------------|------------|------------|
| GWP, t          | 1.00       | 3.27       | 0.21       |
| GWP, f          | 1.00       | 3.27       | 0.21       |
| GWP, b          | 1.00       | 3.25       | 0.21       |
| GWP, luluc      | 1.00       | 3.24       | 0.21       |
| AP              | 1.00       | 3.27       | 0.21       |
| EPf             | 1.00       | 3.26       | 0.21       |
| EPm             | 1.00       | 3.25       | 0.21       |
| EPt             | 1.00       | 3.25       | 0.21       |
|                 |            |            |            |





| POCP  | 1.00 | 3.26 | 0.21 |
|-------|------|------|------|
| ODP   | 1.00 | 3.26 | 0.21 |
| ADPe  | 1.00 | 3.26 | 0.21 |
| ADPf  | 1.00 | 3.26 | 0.21 |
| WDP   | 1.00 | 3.26 | 0.21 |
| PERE  | 1.00 | 3.26 | 0.21 |
| PERM  | 0.00 | 0.00 | 0.00 |
| PERT  | 1.00 | 3.26 | 0.21 |
| PENRE | 1.00 | 3.26 | 0.21 |
| PENRM | 0.00 | 0.00 | 0.00 |
| PENRT | 1.00 | 3.26 | 0.21 |
| SM    | 1.00 | 3.25 | 0.21 |
| RSF   | 1.00 | 3.25 | 0.21 |
| NRSF  | 0.00 | 0.00 | 0.00 |
| FW    | 1.00 | 3.26 | 0.21 |
| HWD   | 1.00 | 3.25 | 0.21 |
| NHWD  | 1.00 | 3.25 | 0.21 |
| RWD   | 1.00 | 3.26 | 0.21 |
| CRU   | 0.00 | 0.00 | 0.00 |
| MFR   | 1.00 | 3.26 | 0.21 |
| MER   | 1.00 | 3.25 | 0.21 |
| EE    | 1.00 | 3.26 | 0.21 |
|       |      |      |      |

| Impact category | 071870-000 | CF6247-008 | F53230-000 |
|-----------------|------------|------------|------------|
| GWP, t          | 1.00       | 2.11       | 0.28       |





| <u> </u>   |      |      |      |
|------------|------|------|------|
| GWP, f     | 1.00 | 2.12 | 0.28 |
| GWP, b     | 1.00 | 1.70 | 0.64 |
| GWP, luluc | 1.00 | 1.95 | 0.38 |
| AP         | 1.00 | 1.95 | 0.35 |
| EPf        | 1.00 | 1.97 | 0.37 |
| EPm        | 1.00 | 1.93 | 0.34 |
| EPt        | 1.00 | 1.94 | 0.35 |
| POCP       | 1.00 | 1.94 | 0.36 |
| ODP        | 1.00 | 1.93 | 0.39 |
| ADPe       | 1.00 | 1.99 | 0.35 |
| ADPf       | 1.00 | 1.92 | 0.40 |
| WDP        | 1.00 | 2.05 | 0.29 |
| PERE       | 1.00 | 1.99 | 0.36 |
| PERM       | 0.00 | 0.00 | 0.00 |
| PERT       | 1.00 | 1.99 | 0.36 |
| PENRE      | 1.00 | 1.92 | 0.40 |
| PENRM      | 0.00 | 0.00 | 0.00 |
| PENRT      | 1.00 | 1.92 | 0.40 |
| SM         | 1.00 | 1.72 | 0.61 |
| RSF        | 1.00 | 1.95 | 0.38 |
| NRSF       | 0.00 | 0.00 | 0.00 |
| FW         | 1.00 | 2.06 | 0.30 |
| HWD        | 1.00 | 2.20 | 0.28 |
| NHWD       | 1.00 | 1.83 | 0.49 |
| RWD        | 1.00 | 2.01 | 0.35 |
| CRU        | 0.00 | 0.00 | 0.00 |
| MFR        | 1.00 | 1.70 | 0.64 |
|            |      |      |      |





| MER | 1.00 | 1.93 | 0.39 |
|-----|------|------|------|
| EE  | 1.00 | 1.67 | 0.67 |