

# PRODUCT ENVIRONMENTAL PROFILE

# **POLYMERIC SPECIAL JOINT - 539650-000**



| Registration number: TECO-00013-V01.01-EN                                                                                                                |                   | Drafting rules: PCR-ed4-EN-2021 09 06 Supplemented by: PSR-0001-ed4-EN-2022 11 16 |                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------|--------------------|--|
| Verifier accreditation number: VH26                                                                                                                      |                   | Information and reference documents: www.pep-ecopassport.org                      |                    |  |
| Date of issue: 08-                                                                                                                                       | 2025              | Validity period: 5 years                                                          |                    |  |
| Independent verification of the declaration and data in compliance with ISO 14025:20                                                                     |                   |                                                                                   | 006                |  |
| Internal: □                                                                                                                                              | External:         |                                                                                   |                    |  |
| The PCR review was conducted by a panel of experts chaired by Julie ORGELET - DDemain                                                                    |                   |                                                                                   |                    |  |
| PEPs are compliant with XP C08-100-1:2016 or EN 50693:2019 The components of the present PEP may not be compared with components from any other program. |                   |                                                                                   | PEP<br>eco<br>PASS |  |
| Document complication Type III environm                                                                                                                  | PORT <sub>®</sub> |                                                                                   |                    |  |





# GENERAL INFORMATION

# PEP ECOPASSPORT® OWNER

Tyco Electronics Polska Sp. Z o.o. Plant, Kablowa 1, 70-895 Szczecin, Poland

# REFERENCE PRODUCT

SMOE-61337: 539650-000

### **DESCRIPTION OF THE PRODUCT**

The SMOE Polymeric Special Joint is a medium-voltage accessory for connecting 24 kV three-core polymeric and paper-insulated cables. It uses heat-shrinkable tubing with built-in impedance stress control to ensure safe electrical performance and insulation integrity. Supplied as a complete kit with mechanical phase and screen connectors, it covers a wide range of conductor sizes with no shelf-life limitations. Compatible with standard polyurethane resin and suitable for armored or unarmored cables, the joint enables fast installation and long-term reliability in diverse environments.

## **FUNCTIONAL UNIT**

To connect together the power transmission cables, or connect them to equipment, for one unit and its packaging, under operating conditions identical to those of the cable, namely: 1 A during 30 years, with a use rate of 100%, according to the standards in force.

### OTHER PRODUCTS COVERED

SMOE-61338: 594258-000

## MARKET APPLICABILITY

Global

# COMPANY REFERENCE CONTACT

Sustainability Analyst & LCA Specialist: Waleed Qatrameez — <u>waleed.qatrameez@te.com</u> Sustainability Manager: Łukasz Sadowski — <u>lukasz.sadowski@te.com</u>

## PLANTS LOCATION

Environmental impacts have been calculated for the TE Connectivity plants located in Poland and Germany:

- Tyco Electronics Polska, Sp. Z o.o. Plant Szczecin, Kablowa 1, 70-895 Szczecin, Poland
- TE Connectivity Tyco Electronics Raychem GmbH, Finsinger Feld 1 · 85521 Ottobrunn, Germany

## **SOFTWARE USED**

iPoint Umberto 11 (version 11.15.2.0)

## **DATABASE**

Ecoinvent 3.11 and Industry data

# REFERENCE YEAR

The reference year used for primary data collection and processing is 2024





# 2 DESCRIPTION OF THE COMPANY

TE is an international group which has its core business in producing highly engineered connectivity, insulating and sensing products covering a large variety of purposes, from global communication infrastructures, utility networks, factories, smart homes and transport sector. For more than 75 years, TE has partnered with customers to produce highly engineered connectivity and sensing products. With approximately 80,000 employees in 107 manufacturing sites around the world, including more than 7,500 engineers, working alongside customers in approximately 140 countries, TE ensures that every connection counts. TE Connectivity consists of the following segments:

- THE TRANSPORTATION segment consists of: Automotive, Industrial & Commercial Transportation, Sensors, Application Tooling BU's.
- THE INDUSTRIAL segment consists of: Industrial, Aerospace, Defense & Marine, Medical, Energy BU's.
- THE COMMUNICATIONS segment consists of: Appliances, Data & Devices BU's

# ENVIRONMENTAL POLICY AND ACTIONS

TE is committed in a sustainable management of its operations. This includes our ambitions to reduce our GHG emissions by more than 35 percent by 2030 (Scope 1 and Scope 2 emissions on a normalized basis), decreasing our waste disposed and helping 100 percent of our facilities in water-stressed regions meet water reduction targets.

All plants in Szczecin and Ottobrunn owns the following certifications:

- ISO 14001
- ISO 14064 for FY21 period (October 2020 September 2021)

# Building a Safer, Sustainable, Productive & Connected Future



# Contributing to the UNSDGs Our One Connected World strategy is aligned with the United Nations Sustainable Development Goals (SDGs), helping us identify where we can improve business practices to support progress against global efforts. For more information, please view our UNSDG Report. 13 STATE STATE





TE Connectivity Szczecin, Gevrey-Chambertin and Ottobrunn plants:





**SZCZECIN** 

**OTTOBRUNN** 

# 3 PRODUCT SPECIFICATIONS

The SMOE Polymeric Special Joint is a pre-engineered medium-voltage jointing system for 24 kV three-core polymeric and paper-insulated cables, designed for safe and durable performance in both underground and above-ground applications. Its range-taking heat-shrinkable tubing adapts to different cable sizes and constructions, ensuring consistent impedance stress control without the need for customization. The joint includes mechanical phase and screen connectors for secure electrical continuity and straightforward on-site assembly. Compatible with standard polyurethane resin and suitable for both armored and unarmored cables, it provides robust mechanical protection, environmental sealing, and long-term insulation integrity. With no shelf-life limitations and compliance with international standards, the SMOE system enables fast installation and reliable service life across utility, industrial, and infrastructure environments.

Technical specifications of the product are reported in the following table:

| Voltage Class                            | ≤ 24        | kV     |
|------------------------------------------|-------------|--------|
| Cable Insulation                         | Polymeric   |        |
| Compatible Conductor Cross-Section Range | 35 – 95     | $mm^2$ |
| Compatible Insulation Diameter Range     | 19.0 - 22.8 | mm     |
| Compatible Conductor Diameter Range      | 6.1 - 12.0  | mm     |

Total weight of product, packaging and additional elements, as well as the list of **constituent materials**, are provided in the following tables:





| Total weight | Product     | Packaging | Additional elements | Unit |
|--------------|-------------|-----------|---------------------|------|
| 6.984        | 5.802       | 1.182     | 0.0                 | Kg   |
|              | Constituent | Plastic   | 28.88%              |      |
|              | materials   | Metals    | 5.71%               |      |
|              |             | Other     | 65.41%              |      |

# 4 MANUFACTURING PROCESS

The SMOE Polymeric Special Joint is manufactured across TE Connectivity's Ottobrunn (Germany) and Szczecin (Poland) facilities. In Ottobrunn, key components such as the SMOE body, tubing elements, and sealing materials are produced using advanced moulding and extrusion processes with high-performance polymers including EPDM elastomer, LDPE, and polyolefin. After passing quality inspections, these parts are shipped to Szczecin, where they are manually assembled with the required inserts and connectors. Each joint is thoroughly inspected before being packed with all kit materials, labelled, palletized, and prepared for shipment to customers.

# 5 RESULTS

Environmental impacts are calculated considering a cradle-to-grave system boundary, including the following life cycle stages:

| Manufactu Upstream  | Core | stage        | stage        | maintenance<br>stage<br>tream | stage       |
|---------------------|------|--------------|--------------|-------------------------------|-------------|
| Manufacturing stage |      | Distribution | Installation | Use &                         | End-of-life |

**PRODUCT CATEGORY:** Polymeric Special Joint for medium voltage networks

**INSTALLATION ELEMENTS:** Steel elements-installation kit provided together with the product **USE SCENARIO:** The product has no active function and electricity is negligible, as confirmed by the engineering department. However, a minimal consumption scenario is included for completeness and consistency with standardized assumptions, in line with PSR requirements.

GEOGRAPHICAL REPRESENTATIVENESS: European market with focus on Norwegian market

**TEMPORAL REPRESENTATIVENESS:** Publication of this PEP is not later than 2 years beyond time validity of Ecoinvent datasets chosen





**TECHNOLOGICAL REPRESENTATIVENESS**: Datasets chosen for modelling product's manufacturing process are representative of the actual production process

**ENERGY DATASETS:** Country-specific energy datasets for manufacturing processes are considered (Polish and German)

Results are reported with the same number of significant figures for each impact indicator. Sums may not coincide with totals due to rounding.

## **ENVIRONMENTAL IMPACTS**

| Impact category | Unit                  | Manufacturing | Distribution | Installation | Use      | End of<br>life | Total     |
|-----------------|-----------------------|---------------|--------------|--------------|----------|----------------|-----------|
| GWP, t          | kg CO <sub>2</sub> eq | 2.10E+01      | 1.12E+00     | 8.22E-01     | 1.45E-03 | 5.82E+00       | 2.87E+01  |
| GWP, f          | kg CO <sub>2</sub> eq | 2.47E+01      | 1.11E+00     | 5.72E-01     | 1.38E-03 | 5.82E+00       | 3.22E+01  |
| GWP, b          | kg CO <sub>2</sub> eq | -3.87E+00     | 7.03E-04     | 2.50E-01     | 6.39E-05 | 2.58E-03       | -3.62E+00 |
| GWP, luluc      | kg CO <sub>2</sub> eq | 1.23E-01      | 3.72E-04     | 6.61E-04     | 7.61E-07 | 3.59E-05       | 1.24E-01  |
| AP              | kg H+ eq              | 2.24E-01      | 3.88E-03     | 1.01E-03     | 4.77E-06 | 1.02E-03       | 2.30E-01  |
| EPf             | kg P eq               | 1.99E-02      | 7.57E-05     | 1.20E-04     | 3.72E-07 | 2.16E-05       | 2.01E-02  |
| EPm             | kg N eq               | 2.78E-02      | 1.28E-03     | 1.62E-03     | 1.29E-06 | 4.38E-04       | 3.12E-02  |
| EPt             | mol N eq              | 2.92E-01      | 1.39E-02     | 2.18E-03     | 1.39E-05 | 4.51E-03       | 3.13E-01  |
| РОСР            | kg<br>NMVOC<br>eq     | 1.44E-01      | 5.62E-03     | 7.97E-04     | 4.38E-06 | 1.25E-03       | 1.52E-01  |
| ODP             | kg CFC-<br>11 eq      | 8.06E-07      | 2.42E-08     | 3.34E-09     | 9.10E-12 | 2.52E-09       | 8.36E-07  |
| ADPe            | kg Sb eq              | 1.93E-03      | 3.81E-06     | 2.07E-06     | 1.00E-08 | 4.95E-07       | 1.94E-03  |
| ADPf            | МЈ                    | 5.82E+02      | 1.58E+01     | 3.52E+00     | 1.06E-02 | 1.48E+00       | 6.03E+02  |
| WDP             | m3<br>depriv.         | 1.56E+01      | 8.23E-02     | 1.13E-01     | 1.75E-01 | 3.15E-01       | 1.63E+01  |

GWP, t: Global Warming Potential total; GWP, f: Global Warming Potential fossil; GWP, b: Global Warming Potential biogenic; GWP, luluc: Global Warming Potential land use and land use change; GWP, GHG: Global Warming Potential irreversible; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP, f: Eutrophication potential-freshwater; EP, m: Eutrophication potential-marine; EP, t: Eutrophication potential-terrestrial; POCP: Formation potential of tropospheric ozone; ADP, e: Abiotic Depletion for non-fossil resources potential, WDP: Water deprivation potential





| Impact category | Unit  | Manufacturing | Distribution | Installation | Use      | End of life | Total    |
|-----------------|-------|---------------|--------------|--------------|----------|-------------|----------|
| PERE            | MJ    | 1.20E+02      | 2.56E-01     | 8.02E-01     | 5.70E-01 | 6.32E-02    | 1.22E+02 |
| PERM            | MJ    | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00    | 0.00E+00 |
| PERT            | MJ    | 1.20E+02      | 2.56E-01     | 8.02E-01     | 5.70E-01 | 6.32E-02    | 1.22E+02 |
| PENRE           | MJ    | 5.83E+02      | 1.58E+01     | 3.52E+00     | 1.06E-02 | 1.48E+00    | 6.04E+02 |
| PENRM           | MJ    | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00    | 0.00E+00 |
| PENRT           | MJ    | 5.83E+02      | 1.58E+01     | 3.52E+00     | 1.06E-02 | 1.48E+00    | 6.04E+02 |
| SM              | kg    | 1.48E+00      | 7.05E-03     | 1.37E-03     | 4.08E-05 | 2.01E-03    | 1.49E+00 |
| RSF             | MJ    | 8.75E-01      | 9.18E-05     | 1.41E-05     | 9.68E-08 | 3.33E-05    | 8.76E-01 |
| NRSF            | MJ    | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00    | 0.00E+00 |
| FW              | $m^3$ | 3.74E-01      | 1.90E-03     | -1.10E-03    | 4.06E-03 | 5.84E-03    | 3.85E-01 |

PERE: Renewable Primary Energy excluding Primary Energy used as raw material; PERM: Renewable Primary Energy used as raw material; PERT: Total use of Renewable Primary Energy; PENRE: Non-renewable Primary Energy excluding Primary Energy used as raw material; PENRM: Non-renewable Primary Energy used as raw material; PENRT: Total use of Non-renewable Primary Energy; SM: Use of secondary raw materials; RSF: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels; FW: Net use of fresh water.

# **OUTPUT FLOWS AND WASTE PRODUCTION**

| Impact category | Unit | Manufacturing | Distribution | Installation | Use      | End of   | Total    |
|-----------------|------|---------------|--------------|--------------|----------|----------|----------|
|                 |      |               |              |              |          | nic      |          |
| HWD             | kg   | 1.88E+00      | 2.26E-02     | 1.35E-02     | 1.62E-04 | 1.00E-01 | 2.01E+00 |
| NHWD            | kg   | 1.56E+02      | 4.83E-01     | 5.04E+00     | 5.48E-03 | 2.95E+00 | 1.65E+02 |
| RWD             | kg   | 8.06E-04      | 4.61E-06     | 2.00E-05     | 1.95E-08 | 1.07E-06 | 8.32E-04 |
| CRU             | kg   | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| MFR             | kg   | 1.72E-01      | 3.17E-04     | 1.32E+00     | 3.04E-05 | 1.17E-01 | 1.61E+00 |
| MER             | kg   | 6.00E-05      | 9.95E-07     | 4.22E-06     | 1.88E-09 | 8.00E-08 | 6.53E-05 |
| EE              | MJ   | 7.95E-01      | 6.85E-03     | 1.59E-02     | 2.05E-05 | 1.22E-01 | 9.39E-01 |

HWV: Hazardous waste disposed; NHWD: Non-hazardous waste disposed; RWD: Radioactive waste disposed; CRU: Components for re-use; MFR: Materials for recycling; MER: Materials for energy recovery; EEE: Exported energy – electricity; EET: Exported energy – thermal energy.

# INVENTORY FLOW INDICATOR - OTHER INDICATORS





| Impact category                            | Unit | Manufacturing | Distribution | Installation | Use      | End of<br>life | Total    |
|--------------------------------------------|------|---------------|--------------|--------------|----------|----------------|----------|
| Biogenic<br>carbon content<br>in product   | Kg C | 0.00E+00      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00       | 0.00E+00 |
| Biogenic<br>carbon content<br>in packaging | Kg C | 5.59E-01      | 0.00E+00     | 0.00E+00     | 0.00E+00 | 0.00E+00       | 5.59E-01 |

# 6 CALCULATION RULES

According to reference PCR the main activities are listed and divided in the following stages:



This declaration is a cradle to grave EPD type, based on the application of Life Cycle Assessment (LCA) methodology to the whole life-cycle system. In the whole LCA model, infrastructures and production equipment are not considered.

Customized LCA questionnaires were used to gather primary data about all aspects of the production system (for example manufacturing processes consumptions and efficiencies, waste management), to provide a complete picture of the environmental burden of the system from raw materials supply to final products delivery.

Allocation occurs anytime a system is producing more than a single output. In this case it is necessary to choose a technique to proper split the environmental burdens among the output flows; international standards ISO 14040 and 14044 provide guidelines about how to deal with this issue, that have been implemented in this project as well. Physical allocation - based on total production amount - was adopted to consistently assign plant data (electricity for services, gas and fuel consumption, water supply, waste treatment) and electricity production process data to the product under study.

Below the sub-phases considered in the analysis are reported, per each life cycle stage:



### MANUFACTURING STAGE

- Special joint's raw materials production
- Kit parts production
- Raw materials and kit components transportation to Ottobrunn plant
- Manufacturing processes from raw materials to semi-finished products at Ottobrunn plant
- Kit parts transportation to Szczecin plant





- Semi-finished product transportation from Ottobrunn to Szczecin plant
- Product kitting at Szczecin plant
- Szczecin and Ottobrunn plants services consumption
- Production of packaging materials for product delivery to customers
- Process waste transportation to treatment sites from Szczecin and Ottobrunn plants
- Treatment of process waste for Szczecin and Ottobrunn plants, according to indications provided by TE



### DISTRIBUTION STAGE

 Product delivery to final customer, considering a specific scenario of transportation to Oslo (Norway) by truck and ferry



#### INSTALLATION STAGE 1

- Transportation of waste product packaging to treatment site (50 km assumption)
- Treatment of waste product packaging, according to Norwegian scenarios



### **USE STAGE**

- A minimal electricity consumption of 0.15 kWh over the reference service life was modeled in accordance with PSR requirements, ensuring completeness and consistency with standardized assumptions
- The background electricity supply uses Ecoinvent v3.11, dataset: Electricity, high voltage {NO}|electricity, high voltage, production mix | Cut-off, U



## **END-OF-LIFE STAGE**

- Transportation of decommissioned product to treatment site (50 km assumption)
- Treatment of decommissioned product<sup>2</sup>

# 7 EXTRAPOLATION FACTORS

The environmental impacts for the other product covered by this PEP, which belong to the same product family as the reference product, can be derived from the reference product's results by applying proportionality rules based on the parameters listed in the following tables—one for each relevant life cycle stage. Since the installation phase involves only packaging waste treatment and is identical for all products, it does not vary. Similarly, the use phase does not vary, as energy consumption is negligible and consistent with the applicable Product Specific Rules (PSR) across all

<sup>&</sup>lt;sup>1</sup> The product on-site installation procedures were not considered in the LCA model, requiring no relevant inputs in terms of materials and energy.

<sup>&</sup>lt;sup>2</sup> According to 2021 WEEE end-of-life scenarios, provided by Eurostat https://ec.europa.eu/eurostat/statistics\_-

\_explained/index.php?title=Waste\_statistics\_-\_electrical\_and\_electronic\_equipment





products. Therefore, extrapolation rules are provided only for the manufacturing, distribution, and end-of-life stages.

| MANUFACTURING STAGE |                        |                        |  |  |
|---------------------|------------------------|------------------------|--|--|
| Impact category     | SMOE-61337: 539650-000 | SMOE-61338: 594258-000 |  |  |
| GWP, t              | 1.00                   | 1.85                   |  |  |
| GWP, f              | 1.00                   | 1.73                   |  |  |
| GWP, b              | 1.00                   | 1.03                   |  |  |
| GWP, luluc          | 1.00                   | 1.13                   |  |  |
| AP                  | 1.00                   | 1.43                   |  |  |
| EPf                 | 1.00                   | 1.36                   |  |  |
| EPm                 | 1.00                   | 1.51                   |  |  |
| EPt                 | 1.00                   | 1.52                   |  |  |
| РОСР                | 1.00                   | 1.74                   |  |  |
| ODP                 | 1.00                   | 1.74                   |  |  |
| ADPe                | 1.00                   | 1.31                   |  |  |
| ADPf                | 1.00                   | 1.84                   |  |  |
| WDP                 | 1.00                   | 1.67                   |  |  |
| PERE                | 1.00                   | 1.21                   |  |  |
| PERM                | 0.00                   | 0.00                   |  |  |
| PERT                | 1.00                   | 1.21                   |  |  |
| PENRE               | 1.00                   | 1.84                   |  |  |
| PENRM               | 0.00                   | 0.00                   |  |  |
| PENRT               | 1.00                   | 1.84                   |  |  |
| SM                  | 1.00                   | 1.07                   |  |  |
| RSF                 | 1.00                   | 1.08                   |  |  |
| NRSF                | 0.00                   | 0.00                   |  |  |
| FW                  | 1.00                   | 1.67                   |  |  |





| HWD  | 1.00 | 1.48 |
|------|------|------|
| NHWD | 1.00 | 1.39 |
| RWD  | 1.00 | 1.66 |
| CRU  | 0.00 | 0.00 |
| MFR  | 1.00 | 1.07 |
| MER  | 1.00 | 1.27 |
| EE   | 1.00 | 2.10 |

| DISTRIBUTION STAGE |                        |                        |  |  |
|--------------------|------------------------|------------------------|--|--|
| Impact category    | SMOE-61337: 539650-000 | SMOE-61338: 594258-000 |  |  |
| GWP, t             | 1.00                   | 1.83                   |  |  |
| GWP, f             | 1.00                   | 1.85                   |  |  |
| GWP, b             | 1.00                   | 1.85                   |  |  |
| GWP, luluc         | 1.00                   | 1.84                   |  |  |
| AP                 | 1.00                   | 1.84                   |  |  |
| EPf                | 1.00                   | 1.84                   |  |  |
| EPm                | 1.00                   | 1.84                   |  |  |
| EPt                | 1.00                   | 1.84                   |  |  |
| POCP               | 1.00                   | 1.85                   |  |  |
| ODP                | 1.00                   | 1.84                   |  |  |
| ADPe               | 1.00                   | 1.84                   |  |  |
| ADPf               | 1.00                   | 1.84                   |  |  |
| WDP                | 1.00                   | 1.85                   |  |  |
| PERE               | 1.00                   | 1.84                   |  |  |
| PERM               | 0.00                   | 0.00                   |  |  |
| PERT               | 1.00                   | 1.84                   |  |  |





| PENRE | 1.00 | 1.84 |
|-------|------|------|
| PENRM | 0.00 | 0.00 |
| PENRT | 1.00 | 1.84 |
| SM    | 1.00 | 1.84 |
| RSF   | 1.00 | 1.84 |
| NRSF  | 0.00 | 0.00 |
| FW    | 1.00 | 1.84 |
| HWD   | 1.00 | 1.84 |
| NHWD  | 1.00 | 1.84 |
| RWD   | 1.00 | 1.84 |
| CRU   | 0.00 | 0.00 |
| MFR   | 1.00 | 1.84 |
| MER   | 1.00 | 1.84 |
| EE    | 1.00 | 1.84 |

| END-OF-LIFE    | STAGE  |
|----------------|--------|
| DI ID OI DII D | DITTOL |

| Impact category | SMOE-61337: 539650-000 | SMOE-61338: 594258-000 |
|-----------------|------------------------|------------------------|
| GWP, t          | 1.00                   | 1.10                   |
| GWP, f          | 1.00                   | 1.10                   |
| GWP, b          | 1.00                   | 1.09                   |
| GWP, luluc      | 1.00                   | 1.10                   |
| AP              | 1.00                   | 1.10                   |
| EPf             | 1.00                   | 1.10                   |
| EPm             | 1.00                   | 1.10                   |
| EPt             | 1.00                   | 1.10                   |
| POCP            | 1.00                   | 1.10                   |
|                 |                        |                        |





| ODP   | 1.00 | 1.10 |
|-------|------|------|
| ADPe  | 1.00 | 1.10 |
| ADPf  | 1.00 | 1.09 |
| WDP   | 1.00 | 1.10 |
| PERE  | 1.00 | 1.09 |
| PERM  | 0.00 | 0.00 |
| PERT  | 1.00 | 1.09 |
| PENRE | 1.00 | 1.09 |
| PENRM | 0.00 | 0.00 |
| PENRT | 1.00 | 1.09 |
| SM    | 1.00 | 1.09 |
| RSF   | 1.00 | 1.10 |
| NRSF  | 0.00 | 0.00 |
| FW    | 1.00 | 1.09 |
| HWD   | 1.00 | 1.09 |
| NHWD  | 1.00 | 1.10 |
| RWD   | 1.00 | 1.09 |
| CRU   | 0.00 | 0.00 |
| MFR   | 1.00 | 1.11 |
| MER   | 1.00 | 1.10 |
| EE    | 1.00 | 1.08 |
|       |      |      |