

PRODUCT ENVIRONMENTAL PROFILE Environmental Product Declaration ABB FLD Accessories for Tmax XT December 2024

REGISTRATION NUMBE ABBG-00421-V01.01-EN		IN COMPLIANCE WITH PCR-ED4-EN-2021 09 06 SUPPLEMENTED BY PSR-0005-ED3.1-EN-2023 12 08			
VERIFIER ACCREDITAT	ION NUMBER	INFORMATION AND REFERENCE DOCUMENTS			
VH50		www.pep-ecopassport.org			
DATE OF ISSUE		VALIDITY PERIOD			
12-2024		5 years			
INDEPENDENT VERIFIC	CATION OF THE DECLARATION AND DA	TA, IN COMPLIANCE WITH ISO 14025: 2006			
INTERNAL	EXTERNAL ⊠				
THE PCR REVIEW WAS	CONDUCTED BY A PANEL OF EXPERTS	CHAIRED BY JULIE ORGELET (DDEMAIN)			
	WITH XP C08-100-1 :2016 OR EN 50693 E PRESENT PEP CANNOT BE COMPARE				

DOCUMENT IN COMPLIANCE WITH ISO 14025: 2006 « ENVIRONMENTAL LABELS AND DECLARATIONS. TYPE III ENVIRONMENTAL DECLARATIONS »

© Copyright 2022 ABB. All rights reserved.

ABB S.p.A. **EPD Owner** Via Luciano Lama, 33, 20099 Sesto San Giovanni (MI) – Italy

www.abb.com

Manufacturer name

ABB S.p.A.

and address

Via E. Fermi 40 - 03100 Frosinone (FR) - Italy

Company contacts

EPD_ELSP@in.abb.com

Reference product

FLD XT5 F/P

Description of the product

ABB's Front for the lever operating mechanism can be installed on the front of the circuit-breaker and for withdrawable circuit- breakers inside switchboards. It is always fitted with a compartment door lock and with a slot for a padlock device in the open position which prevents closing the circuit-breaker and the compartment

door.

Functional unit

The functional unit to this study is a single Accessories to prevent closing of the circuit-breaker and the compartment door with service life of 20 years, The front for the lever operating mechanism can be installed on the XT2, XT4, XT5 and XT6 circuitbreakers. The front for the lever operating mechanism can be fitted with a wide range of key locks and padlocks.

FLD - XT5 W Other prod-FLD - XT6 F/P ucts covered FLD - XT6 W

Reference lifetime

20 years

Product category

Other equipment

Load rate: -**Use Scenario** Use time rate: -

Geographical representativeness

Raw materials & Manufacturing: [Global]

Assembly: [China]

Distribution / Use: [Global] specific sales mix EoL: [Global]

Technologi-

cal representativeness

Materials and processes data are specific to the production of

FLD XT5 F/P

LCA Study This study is based on the LCA study described in the LCA report 1SDH002498A1

EPD type **Product Family Declaration EPD** scope "Cradle to grave"

Year of re-

ported pri-

mary data LCA soft2022

ware

SimaPro 9.5.0.1 (2023)

LCI database

Ecoinvent v3.9.1 (2023)

LCIA methodology

EN 15804:2012+A2:2019/ EF 3.1

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	2/17

Contents

ABB Purpose & Embedding Sustainability	4
General Information	4
Constituent Materials	6
LCA background information	7
Functional unit and Reference Flow	7
System boundaries and life cycle stages	7
Temporal and geographical boundaries	8
Boundaries in the life cycle	
Data quality	8
Environmental impact indicators	8
Allocation rules	
Limitations and simplifications	9
Energy Models	10
Inventory analysis	10
Environmental impacts	13
Additional environmental information	16
References	17

Аррготса		ABBG GOTEL VOLUE EIV	ISBITOGESGIAI	н.000	CII	5/11
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	3/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 105 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control. ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

ABB's Frosinone factory represents a centre of excellence in ABB for the development and manufacture of low-voltage circuit breakers. The 150,000 square-meter facility with 800 employees is highly automated and produces more than three million circuit breakers every year. A Lighthouse Plant, selected by the Italian government as a model for digital transformation and Industry 4.0 strategies, Frosinone promotes smart, digitalized, and connected operations, increasing efficiency across the full value chain. Achieving zero production waste to landfill was a whole-factory program. Flexibility, lean production processes, capacity to efficiently and rapidly meet market demands, and process innovation are some of the most significant characteristics of this site

ABB IT-ELSP adopts and implements for its own activities an integrated Quality/Environmental/Health Management System in compliance with the following standards:

- UNI EN ISO 9001:2015 Quality Management Systems Requirements
- UNI EN ISO 14001:2015 Environmental management systems Specification with guidance for use
- UNI EN ISO 45001:2018 Occupational Health and Safety Assessment Series Requirements
- SA 8000:2014 Social Accountability 8000 SA 8000

ABB offers a wide range of low voltage Air Circuit Breakers & Molded Case Circuit Breakers for different applications. The primary scope of Low Voltage Circuit Breakers is to isolate parts of an electrical distribution system in the event of abnormal conditions. Abnormal conditions are generally caused by faults on a system which can lead to dangerous situations for both people and the system itself. In addition to providing system protection, circuit breakers enable parts of the electrical distribution to be isolated for operation and maintenance.

In the factory, the different components and subassemblies are assembled on the manufacturing line. All components and subassemblies are produced by ABB's suppliers and are only assembled in the factory.

Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	800.A	en	4/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Product cluster

ABB's Front for the lever operating mechanism can be installed on the front of the circuit-breaker and for withdrawable circuit- breakers inside switchboards.

It is always fitted with a compartment door lock and with a slot for a padlock device in the open position which prevents closing the circuit-breaker and the compartment door.

The front for the lever operating mechanism which can be installed on the XT2, XT4, XT5 and

XT6 circuit-breakers. The front for the lever operating mechanism can be fitted with a wide range of key locks and padlocks.

Along the whole Accessories product cluster, a set of different build configurations have been covered by this analysis. The SimaPro LCA model has been fully parametrized to include different configurations.

No cut-off criteria have been applied to the analysis of the product and its packaging. Additional packaging for semifinished products along the supply chain haven't been considered

Official declarations 1SDL000282R1377 [13] and 1SDL000282R1378 [14] states compliance of ABB molded case circuit breakers and air circuit breakers respectively to RoHS II and REACH regulations; annex 1SDL000571R0 [15] provides exemptions considered for RoHS II.

Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	5/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Constituent Materials

FLD XT5 F/P

The representative product is FLD XT5 F/P which weighs 0.501 kg including its paper documentation and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
Metals	Steel	M-119	53.3	10.6%
Metals	Stainless Steel	M-100	12.5	2.5%
	Polycarbonate	M-254	300.4	59.9%
	Polyethylene	M-251	3.5	0.7%
Plastics	Elastomer	M-320	3.5	0.7%
Plastics	Unsaturated Polyester	M-301	0.1	<0.1%
	PolyVinylChloride	M-250	0.0	<0.1%
	Polyamide	M-258	0.0	<0.1%
Other	Paper/Cardboard	M-341	128.2	25.6%
Total			501.6	100.0%

Table 1: Weight of materials FLD XT5 F/P

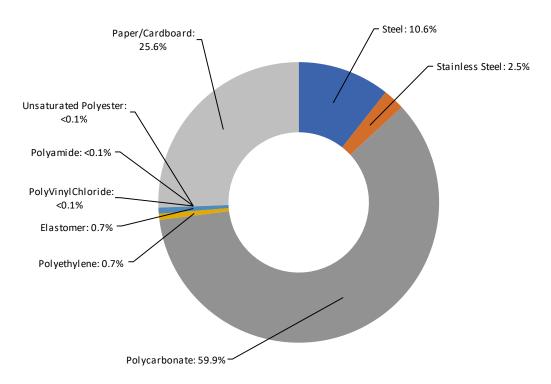


Figure 1: Composition of FLD XT5 F/P

Packaging for reference product FLD XT5 F/P weighs 130.3 g, with the following substance composition:

Material	Unit	FLD XT5 F/P
Corrugated Cardboard	g	126.8
Polyethylene	g	3.5

Table 2: Weight of packaging materials FLD XT5 F/P

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	800.A	en	6/17
a Countries 2000 ADD All Selections and						

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

The functional unit to this study is a single Accessories to prevent closing of the circuit-breaker and the compartment door with service life of 20 years, The front for the lever operating mechanism can be installed on the XT2, XT4, XT5 and XT6 circuit-breakers. The front for the lever operating mechanism can be fitted with a wide range of key locks and padlocks as per" other equipment" of PSR [2].

The Reference flow of the study is a single accessory (including its packaging) with mass described in chapter 1.3, table 1.

System boundaries and life cycle stages

The life cycle of an Coil, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semi-finished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems.

Manufacturing	Distribution	Installa- tion	Use	End-of-Life (EoL)
Acquisition of raw materials Transport to manufacturing site Components/parts manufacturing Assembly Packaging EoL treatment of generated waste	Transport to distribu- tor/ logistic center Transport to place of use	Installation EoL treatment of generated waste (packaging)	Usage Mainte- nance	Deinstallation Collection and transport EoL treatment

Table 3: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	7/17

Temporal and geographical boundaries

The ABB component suppliers are sourced all over the world. All primary data collected are from 2022, which is a representative production year. Secondary data are also representative for this year, as provided by ecoinvent [6].

The selected ecoinvent [6] processes in the LCA model have a global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology, and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to PCR [1] and EN 50693 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR [1] and the EN 50693:2019 [3] standard establish four indicators for climate change: Climate change (total) which includes all greenhouse gases; Climate change (fossil fuels); Climate change (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; Climate change (land use) - land use and land use transformation. Other indicators as per the PCR [1].

Allocation rules

Allocation coefficients are based on the per piece consumption for electricity, water apart from assembly processes. The allocation of the total amount of waste generated by the production line as well.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	800.A	en	8/17

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km assuming no specific data available PCR [1]. This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Surface treatments like galvanizing, silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model. Scraps for metal working and plastic processes are included when already defined in Ecoinvent [6].

The only limitations and simplifications applied to this study are listed in the following table.

Category	Description
Packaging	An average raw material packaging content of 5% of the mass of the reference equipment has been considered as follow- Wood 50%, Cardboard 40%, Low density polyethylene 10%.
Tranports	Specific transport parameters along the entire supply chain of the reference products have been considered as representative for all the products covered by the study
MU Emissions	Impacts related to the production, transportation and installation of capital goods (buildings, infrastructure, machinery, internal transport packaging) and general operations that cannot be directly allocated to products have been excluded

Table 4: Limitation and simplification used in each LCA stage.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	9/17
© Converight 2022 ABB. All rights reserved						

Energy Models

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material ex- traction and pro- cessing	A1-A2	Electricity, {RER} market group for Cut-off Electricity, {GLO} market group for Cut-off	Based on materials and supplier's locations
Manufacturing	АЗ	Electricity, low voltage {CN} market group for electricity, low voltage Cutoff, S	-
Installation (Packaging EoL)	A5	Electricity, {GLO} market group for Cut-off	-
Use Stage	B1-B6	-	-
EoL	C1-C4	Electricity, {GLO} market group for Cut-off	

Table 5: Energy models used in each LCA stage.

^{**} Please refer the use phase for further description

Inventory analysis

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP and Windchill ERP were used. They are a list of all the components and assemblies that constitute the finished product, organized by hierarchy level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area, volume and weight data, taken from technical drawings/datasheets. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Searates).

All primary data collected from ABB are from 2022, which was a representative production year. The ecoinvent cut-off by classification system processes [6] are used to represent the LCA model.

To improve both the inventory and modelling phase of the product, a specific modular dataset framework has been adopted. Raw materials and Manufacturing processes datasets from Ecoinvent database [6] have been clustered and listed inside two distinct mater data tables ABB Raw Materials and ABB Materials & Processes. Data used in the analysis is not older than 10 years.

e Constitutional App. All Tables and						
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	800.A	en	10/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Manufacturing stage

The Accessories is composed of a multitude of components, all of which are made from of numerous materials.

All the Accessories components have been modelled according to their specific raw materials and manufacturing processes.

The single use packaging as well as paper documentation are also included in the analysis in the manufacturing stage. ABB receives packaged product from supplier, sorts, repacks and delivers to the customer according to the orders.

Most of the inputs to the products' manufacturing stage are already produced component parts from the supply chain.

The entire supplier's network has been modelled with the calculation of each transportation stage, from the first manufacturing supplier to the next.

All the distances from the last subassembly suppliers' factories to the ABB facility have been calculated.

The complete energy mix has been modeled considering the GO on energy origins provided to ABB for the year 2022.

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific 2022 sales mix data for cluster (SAP ERP sales data as a source). An additional 1000km distance is considered as per the PCR [1].

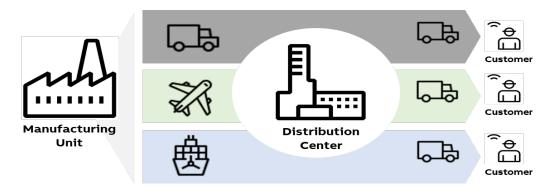


Figure 2: Distribution methodology.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the coil.

For the disposal of the packaging after installation of the product at the end of its life, a transport distance of 100 km (according to PSR [2]) was assumed).

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest average data for 2021 available, for countries other than EU 100% incineration has been considered.

			I.	I	I	,
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	11/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Use

These products have no power loss during use phase, since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9].

Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]).

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	12/17

Environmental impacts

The following table show the environmental impact indicators of the life cycle of a FLD XT5 F/P as indicated by PCR [1] and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different stages (manufacturing, distribution, installation, use and end-of-life).

Impact category	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
GWP-total	kg CO2 eq	6.48E+00	5.41E+00	8.23E-01	1.49E-01	0.00E+00	9.54E-02
GWP-fossil	kg CO2 eq	6.39E+00	5.46E+00	8.23E-01	1.25E-02	0.00E+00	9.47E-02
GWP-biogenic	kg CO2 eq	7.93E-02	-5.81E-02	8.72E-05	1.37E-01	0.00E+00	5.94E-04
GWP-luluc	kg CO2 eq	4.72E-03	4.54E-03	8.55E-05	1.49E-06	0.00E+00	9.49E-05
ODP	kg CFC11-eq	9.94E-08	8.58E-08	1.27E-08	6.25E-11	0.00E+00	8.65E-10
AP	mol H+ eq	3.18E-02	2.72E-02	4.07E-03	3.10E-05	0.00E+00	4.51E-04
EP-freshwater	kg P eq	1.58E-03	1.53E-03	1.65E-05	5.10E-07	0.00E+00	3.20E-05
EP-marine	kg N eq	7.52E-03	5.85E-03	1.52E-03	2.06E-05	0.00E+00	1.39E-04
EP-terrestrial	mol N eq	7.70E-02	5.93E-02	1.66E-02	1.34E-04	0.00E+00	1.05E-03
POCP	kg NMVOC eq	2.66E-02	2.10E-02	5.28E-03	3.88E-05	0.00E+00	3.36E-04
ADP-m&m	kg Sb eg	5.13E-05	5.06E-05	3.60E-07	9.74E-09	0.00E+00	3.90E-07
ADP-fossil	MJ	9.37E+01	8.14E+01	1.10E+01	4.37E-02	0.00E+00	1.21E+00
WDP	m3 of equiv.	1.02E+00	9.91E-01	1.92E-02	2.11E-03	0.00E+00	9.46E-03
PENRE	depriv. MJ	8.45E+01	7.23E+01	1.10E+01	4.37E-02	0.00E+00	1.21E+00
PENRM	MJ	9.13E+00	9.13E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	9.37E+01	8.14E+01	1.10E+01	4.37E-02	0.00E+00	1.21E+00
PERE	MJ	6.41E+00	6.23E+00	4.87E-02	1.24E-03	0.00E+00	1.24E-01
PERM	MJ	1.65E+00	1.65E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	8.06E+00	7.88E+00	4.87E-02	1.24E-03	0.00E+00	1.24E-01
SM	kg	3.70E-02	3.70E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PET	MJ	1.02E+02	8.93E+01	1.10E+01	4.50E-02	0.00E+00	1.34E+00
FW	m3	3.33E-02	3.22E-02	6.21E-04	8.19E-05	0.00E+00	4.00E-04
HWD	kg	8.84E-04	8.05E-04	7.52E-05	3.84E-07	0.00E+00	3.73E-06
N-HWD	kg	2.01E+00	1.50E+00	8.85E-02	4.92E-02	0.00E+00	3.75E-01
RWD	kg	1.15E-04	1.12E-04	9.33E-07	1.84E-08	0.00E+00	2.27E-06
CfR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MfR	kg	1.50E+00	1.12E+00	0.00E+00	4.15E-02	0.00E+00	3.46E-01
MfER	kg	8.74E-02	0.00E+00	0.00E+00	8.41E-02	0.00E+00	3.32E-03
EN	MJ by energy vector	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PM	disease inc.	3.31E-07	3.11E-07	1.45E-08	3.55E-10	0.00E+00	5.25E-09
IRP	kBq U-235 eq	4.55E-01	4.42E-01	3.83E-03	7.36E-05	0.00E+00	9.31E-03
ETP-fw	CTUe	1.23E+02	1.21E+02	9.19E-01	3.47E-01	0.00E+00	3.25E-01
HTP-c	CTUh	4.87E-08	4.74E-08	1.11E-09	3.79E-11	0.00E+00	1.44E-10
HTP-nc	CTUh	6.18E-08	5.26E-08	8.11E-09	3.18E-10	0.00E+00	7.56E-10
SQP	Pt	2.67E+01	2.48E+01	1.66E+00	2.97E-02	0.00E+00	2.57E-01

Table 6: Impact indicators for FLD XT5 F/P

Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	13/17
© Copyright 2022 ABB. All rights reserved.						

Impact category	Unit	FLD XT5 F/P
Biogenic Carbon content of the product	kg	6.91E-04
Biogenic Carbon content of the associated packaging	kg	2.52E-02

Table 7: Inventory flow other indicators

Environmental impact indicators

	-
GWP-total	Global Warming Potential total (Climate change)
GWP-fossil	Global Warming Potential fossil
GWP-biogenic	Global Warming Potential biogenic
GWP-luluc	Global Warming Potential land use and land use change
ODP	Depletion potential of the stratospheric ozone layer
AP	Acidification potential
EP-freshwater	Eutrophication potential - freshwater compartment
EP-marine	Eutrophication potential - fraction of nutrients reaching marine end compartment
EP-terrestrial	Eutrophication potential -Accumulated Exceedance
POCP	Formation potential of tropospheric ozone
ADP-m&m	Abiotic Depletion for non-fossil resources potential
ADP-fossil	Abiotic Depletion for fossil resources potential
WDP	Water deprivation potential

Resource use indicators

PERE	Use of renewable primary energy excluding renewable primary energy resources used as raw material
PERM	Use of renewable primary energy resources used as raw material
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PENRE	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material
PNERM	Use of non-renewable primary energy resources used as raw material
PENRT	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PET	Total use of primary energy in the lifecycle

Secondary materials, water and energy resources

SM	Use of secondary materials
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	FW: Net use of fresh water

Waste category indicators

HWD	Hazardous waste disposed
N-HWD	Non-hazardous waste disposed
RWD	Radioactive waste disposed

Output flow indicators

CfR	Components for reuse
MfR	Materials for recycling
MfER	Materials for energy recovery

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	14/17		
© Converight 2022 ABB. All rights reserved								

EN Exported energy

Other indicators

PM	Emissions of Fine particles
IRP	Ionizing radiation, human health
ETP-fw	Ecotoxicity, freshwater
HTP- c	Human toxicity, carcinogenic effects
HTP- nc	Human toxicity, non-carcinogenic effects
SQP	Impact related to Land use / soil quality

Extrapolation for Homogeneous environmental family

This PEP covers different build configurations than representative product. All the analyzed configurations have the same main functionality, product standards and manufacturing technology.

The different life cycle stages can be extrapolated to other products of the same homogeneous environmental family by applying a rule of proportionality to the parameters in the following tables, divided by different life cycle stages.

LCA Phase: Manufacturing

Product	GWP-total	GWP-fossil	GWP-biogenic	GWP-Iuluc	ODP	АР	EP-freshwater	EP-marine	EP-terrestrial	POCP	ADP-minerals & met- als	ADP-fossil	WDP
FLD - XT5 F/P	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FLD - XT5 W	0.93	0.94	0.97	0.93	0.88	0.94	0.93	0.95	0.95	0.92	0.94	0.91	0.95
FLD - XT6 F/P	1.41	1.41	1.33	1.36	1.63	1.37	1.40	1.38	1.34	1.44	1.40	1.53	1.76
FLD - XT6 W	1.33	1.33	1.30	1.29	1.49	1.30	1.32	1.32	1.28	1.35	1.31	1.43	1.66

Table 8: Extrapolation factors for Manufacturing stage

Reference product: FLD XT5 F/P

LCA Phase: Distribution

Product	GWP-total
FLD - XT5 F/P	1.00
FLD - XT5 W	0.91
FLD - XT6 F/P	1.58
FLD - XT6 W	1.48

Table 9: Extrapolation factors for Distribution stage Reference product: FLD XT5 F/P

LCA Phase: Installation

Installation phase impacts are common across all variants of the product.

LCA Phase: Use

These products have no power loss during use phase

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	15/17			
© Copyright 2022 ABB. All rights reserved.									

LCA Phase: End of Life

Product	GWP-total	GWP-fossil	GWP-biogenic	GWP-Iuluc	ООР	АР	EP-freshwater	EP-marine	EP-terrestrial	POCP	ADP-minerals & metals	ADP-fossil	WDP
FLD - XT5 F/P	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FLD - XT5 W	0.90	0.90	0.99	0.91	0.90	0.91	0.91	0.89	0.90	0.90	0.90	0.90	0.91
FLD - XT6 F/P	1.67	1.66	4.28	1.63	1.65	1.64	1.62	1.83	1.67	1.67	1.64	1.64	1.44
FLD - XT6 W	1.54	1.53	4.25	1.50	1.52	1.51	1.49	1.69	1.53	1.54	1.51	1.51	1.31

Table 10: Extrapolation factors for EOL Phase

Reference product: FLD XT5 F/P

Additional environmental information

According to the waste treatment scenario calculation in Simapro [7], based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

	FLD XT5 F/P
Recyclability potential	93.2%

Table 11: Recyclability potential of FLD XT5 F/P

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	A.008	en	16/17			
© Constitute 2022 ARR All sinks accounted									

References

[1]	PCR "PEP-PCR-ed4-EN-2021_09_06" - Product Category Rules for Electrical, Electronic
	and HVAC-R Products (published: 6th September 2021)

- [2] PSR "PSR-0005-ed3.1-EN-2023 12 08" SPECIFIC RULES FOR Electrical switchgear and control gear Solutions
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006/Amd 1:2020 Environmental management -Life cycle assessment Principles and framework
- [5] ISO 14044:2006/Amd:1:2017/Amd2:2020 Environmental management Life cycle assessment Requirements and guidelines
- [6] ecoinvent v3.9.1 (2023). ecoinvent database version 3.8 (https://ecoinvent.org/)
- [7] SimaPro Software version 9.5.0.1 PRé Sustainability
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019).
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment Edition 1.0 2012-10
- [10] https://www.ecosystemspa.com/
- [11] 1SDH002500A1_ Accessories_GP2_BOM_Process
- [12] 1SDH002499A1_Accessories_GP2_Data
- [13] 1SDL000282R1377 RoHS II (MCCBs and ACBs)
- [14] 1SDL000282R1378 REACH (MCCBs and ACBs)
- [15] 1SDL000571R0 Ver 01 RoHS Exemptions (MCCBs and ACBs)

Approved	Public	ABBG-00421-V01.01-EN	1SDH002501A1	800.A	en	17/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE